欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2024, Vol. 44 ›› Issue (6): 914-925.doi: 10.7525/j.issn.1673-5102.2024.06.012

• 分子生物学 • 上一篇    下一篇

沙鞭PvAQP基因克隆及耐旱功能验证

刘玉萍1,2,3, 余明君1,2, 张雨1,2, 苏旭1,2,3(), 李小莉1,2, 杨倩1,2, 刘雪丽1,2   

  1. 1.青海师范大学生命科学学院,西宁 810008
    2.青海师范大学青海省青藏高原生物多样性形成机制与综合利用重点实验室,西宁 810008
    3.青海师范大学高原科学与可持续发展研究院,西宁 810016
  • 收稿日期:2024-03-06 出版日期:2024-11-20 发布日期:2024-11-22
  • 通讯作者: 苏旭 E-mail:xusu8527972@126.com
  • 作者简介:刘玉萍(1980—),女,教授,主要从事高山植物遗传多样性及系统进化研究。
  • 基金资助:
    青海省自然科学基金面上项目(2022-ZJ-918);国家自然科学基金项目(32160297)

Cloning and Drought Tolerance Functional Validation of PvAQP Gene in Psammochloa villosa (Poaceae)

Yuping LIU1,2,3, Mingjun YU1,2, Yu ZHANG1,2, Xu SU1,2,3(), Xiaoli LI1,2, Qian YANG1,2, Xueli LIU1,2   

  1. 1.School of Life Sciences,Qinghai Normal University,Xining 810008
    2.Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Xizang Plateau in Qinghai Province,Qinghai Normal University,Xining 810008
    3.Academy of Plateau Science and Sustainability,Qinghai Normal University,Xining 810016
  • Received:2024-03-06 Online:2024-11-20 Published:2024-11-22
  • Contact: Xu SU E-mail:xusu8527972@126.com

摘要:

为解析沙鞭(Psammochloa villosa)水通道蛋白(Aquaporin,AQP)基因AQP响应耐旱过程的功能和作用,利用三代全长转录组数据,采用RT-PCR技术克隆沙鞭AQP基因,对其进行生物信息学及干旱胁迫下表达模式和转基因烟草(Nicotiana tabacum)的耐旱分析。结果显示:(1)成功克隆到沙鞭AQP基因,命名为PvAQP(GenBank号:ON792207),其序列全长为867 bp,编码288个氨基酸,隶属疏水性蛋白。(2)PvAQP具有明显的跨膜结构,是一个跨膜蛋白,存在1个完整的MIP结构域。(3)PvAQP编码蛋白的二级结构主要由α-螺旋、不规则卷曲、延伸链和β-转角构成,三级结构主要由α-螺旋和不规则卷曲组成。(4)PvAQP无信号肽结构,无可能的糖基化位点,含有19个磷酸化位点。(5)亚细胞定位分析表明,PvAQP蛋白定位于细胞核中。(6)不同物种间AQP基因氨基酸序列同源性为95.34%,沙鞭与沙生针茅(Stipa caucasica)亲缘关系最近。(7)PvAQP基因表达具有组织特异性,根、茎、叶中的表达量存在较大差异。(8)随模拟干旱胁迫时间增加,转PvAQP基因型和野生型烟草中抗氧化酶(SOD、POD和CAT)活性及脯氨酸(PRO)含量呈先升高后降低趋势,转PvAQP基因型烟草中抗氧化酶活性及PRO含量更高;丙二醛(MDA)含量都呈上升趋势,且转PvAQP基因型烟草中MDA含量显著低于野生型(P<0.05)。研究结果表明,PvAQP基因可能参与了沙鞭的耐旱生理过程,为将来揭示沙鞭PvAQP基因响应耐旱分子机制提供了理论依据。

关键词: 沙鞭, AQP基因, 基因克隆, 干旱胁迫, 功能验证

Abstract:

In order to clarify the function and role of the AQP gene of Psammochloa villosa in response to drought tolerance, the AQP gene of P. villosa was cloned by using the three generations full transcriptome data and RT-PCR, and the bioinformatics and expression patterns of AQP gene under drought stress and drought tolerance in transgenic tobacco(Nicotiana tabacum) were analyzed, respectively. The results indicated that: (1)the AQP gene of P. villosa was successfully cloned, named PvAQP(GenBank number: ON792207), CDS length of PvAQP was 867 bp, encoding 288 amino acids and belonging to hydrophobic protein. (2)PvAQP had obvious transmembrane structure with a complete MIP domain, which was a transmembrane protein. (3)The secondary structure of PvAQP encoded protein included α-helix, irregular curls, extended chains and β-fold, while the tertiary structure was mainly composed of α-helix and irregular curls. (4)PvAQP gene had no signal peptide structure, no glycosylation sites, and contained 19 phosphorylation sites. (5)Subcellular localization analysis showed that PvAQP protein was localized in the nucleus. (6)Among different species, the homology with amino acid sequences of PvAQP gene was 95.34%. P. villosa had the closest genetic relationship with Stipa caucasica. (7)The expression of PvAQP gene was tissue-specific, with significant differences in the roots, stems, and leaves of P. villosa. (8)With the increase of simulated drought-stress time, the activities of superoxide dismutase(SOD), peroxidase(POD) and catalase(CAT), and the content of proline(PRO) first increased and then decreased in transgenic tobacco and wild type tobacco. Compared with wild type tobacco, the express levels in the transgenic tobacco were higher, while the content of malondialdehyde(MDA) showed an increasing trend, and the content of MDA in transgenic PvAQP gene-type was significantly lower than that of wild type. The results suggested that PvAQP gene might be involved in the physiological process of drought tolerance within P. villosa, and provided the theoretical evidence for revealing the molecular mechanism of PvAQP gene responding to drought tolerancein the future.

Key words: Psammochloa villosa, AQP gene, gene cloning, drought stress, functional validation

中图分类号: