植物研究 ›› 2023, Vol. 43 ›› Issue (4): 572-581.doi: 10.7525/j.issn.1673-5102.2023.04.010
收稿日期:
2023-01-16
出版日期:
2023-07-20
发布日期:
2023-07-03
通讯作者:
刘沁松
E-mail:qinsongliu@126.com
作者简介:
徐磊(1997—),男,硕士研究生,主要从事植物分子生物学研究。
基金资助:
Lei XU, Xiao XU, Qinsong LIU()
Received:
2023-01-16
Online:
2023-07-20
Published:
2023-07-03
Contact:
Qinsong LIU
E-mail:qinsongliu@126.com
About author:
XU Lei(1997—),male,master candidate,mainly engaged in plant molecular biology research.
Supported by:
摘要:
通过对珙桐(Davidia involucrata)幼苗进行水杨酸(SA)处理,探讨在盐胁迫下SA对珙桐叶片膜脂过 氧化程度、活性氧(ROS)积累、抗氧化酶活性、抗氧化剂含量等生理指标及基因表达的影响。结果表明:施用 2 mmol·L-1的SA可以显著降低盐胁迫下珙桐幼苗的相对电导率,抑制丙二醛(MDA)和ROS的积累,提高相对含水量、抗氧化酶(SOD、POD和APX)活性以及谷胱甘肽(GSH)含量。施用SA导致盐胁迫下2 581个珙桐基因表达发生变化,其中1 516个上调表达,1 065个下调表达。KEGG分析发现,差异表达基因富集在包括苯丙烷类生物合成在内的9条通路。此外,转录组与实时荧光定量PCR结果均显示,在盐胁迫条件下,转录因子基因DiWRKY40、DiNAC25、DiMYB4和DiMYB86的表达受到SA的显著诱导。研究表明,外源SA可在盐胁迫下刺激珙桐幼苗产生逆境应答,引起基因表达发生变化,进而缓解盐胁迫对珙桐幼苗的伤害。
中图分类号:
徐磊, 胥晓, 刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响[J]. 植物研究, 2023, 43(4): 572-581.
Lei XU, Xiao XU, Qinsong LIU. Effects of Exogenous Salicylic Acid on Antioxidant System and Gene Expression of Davidia involucrata Seedlings under Salt Stress[J]. Bulletin of Botanical Research, 2023, 43(4): 572-581.
表1
实时荧光定量PCR引物
表2
转录组测序质量
样品名称 Sample | 原始读长 Raw reads | 过滤读长 Clean reads | 质量值 Q30/% | GC含量 GC content/% | 总比对 Total mapped | 多重比对 Multiple mapped | 唯一比对 Uniquely mapped |
---|---|---|---|---|---|---|---|
表3
差异表达基因的KEGG分析
1.86×10-12 | ||||
4.75×10-7 | ||||
1.22×10-6 | ||||
0.000 616 | ||||
0.001 230 | ||||
0.001 399 | ||||
0.001 453 | ||||
0.001 561 | ||||
0.002 448 |
表4
注释到苯丙烷类生物合成途径的差异表达基因
基因ID Gene ID | 基因功能 Gene function | 调控 Regulation | log2FoldChange | padj padj value |
---|---|---|---|---|
Dinv31309 | 苯丙氨酸解氨酶 Phenylalanine ammonia-lyase | 上调Up | 2.351 835 618 | 7.60×10-91 |
Dinv42363 | 苯丙氨酸解氨酶 Phenylalanine ammonia-lyase | 上调Up | 2.262 196 592 | 8.18×10-34 |
Dinv37296 | 苯丙氨酸解氨酶2 Phenylalanine ammonia-lyase 2 | 上调Up | 1.087 079 283 | 0.002 635 67 |
Dinv13688 | 4-香豆酸-辅酶A连接酶2 4-coumarate--CoA ligase 2 | 上调Up | 1.109 700 195 | 2.86×10-23 |
Dinv28733 | 反肉桂酸4-单加氧酶 Trans-cinnamate 4-monooxygenase | 下调Down | -1.530 300 677 | 1.74×10-23 |
Dinv28734 | 反肉桂酸4-单加氧酶 Trans-cinnamate 4-monooxygenase | 下调Down | -1.541 750 51 | 6.44×10-39 |
Dinv23273 | 莽草酸羟基肉桂酰基转移酶 Shikimate O-hydroxycinnamoyltransferase | 上调Up | 1.188 252 729 | 5.25×10-8 |
novel.386 | 咖啡酰辅酶A-O-甲基转移酶 Caffeoyl-CoA O-methyltransferase | 上调Up | 1.675 679 415 | 3.25×10-69 |
Dinv17295 | 咖啡酸3-O-甲基转移酶 Caffeic acid 3-O-methyltransferase | 上调Up | 1.287 852 331 | 1.27×10-54 |
Dinv28242 | 咖啡酸3-O-甲基转移酶 Caffeic acid 3-O-methyltransferase | 上调Up | 1.438 655 657 | 3.08×10-12 |
Dinv34261 | 咖啡酸3-O-甲基转移酶 Caffeic acid 3-O-methyltransferase | 下调Down | -1.031 352 199 | 0.015 344 14 |
Dinv11989 | 金黄紫堇碱-9-O-甲基转移酶 (S)-scoulerine 9-O-methyltransferase | 上调Up | 1.261 821 713 | 1.31×10-6 |
Dinv32208 | 金黄紫堇碱-9-O-甲基转移酶 (S)-scoulerine 9-O-methyltransferase | 上调Up | 1.298 036 084 | 0.007 392 16 |
Dinv01483 | 细胞色素P450 CYP736A12 Cytochrome P450 CYP736A12 | 上调Up | 1.811 961 135 | 0.003 220 73 |
Dinv07345 | 细胞色素P450 CYP736A12 Cytochrome P450 CYP736A12 | 上调Up | 2.860 017 242 | 3.14×10-6 |
Dinv09818 | 细胞色素P450 CYP736A12 Cytochrome P450 CYP736A12 | 上调Up | 2.177 280 915 | 0.002 024 71 |
Dinv25301 | 阳离子过氧化酶1 Cationic peroxidase 1 | 上调Up | 2.235 343 16 | 5.63×10-120 |
Dinv11392 | 阳离子过氧化酶1 Cationic peroxidase 1 | 上调Up | 2.440 567 688 | 2.70×10-28 |
Dinv12259 | 过氧化物酶4 Peroxidase 4 | 上调Up | 1.573 980 32 | 9.56×10-47 |
Dinv25889 | 过氧化物酶12 Peroxidase 12 | 上调Up | 1.286 981 443 | 2.20×10-47 |
Dinv17837 | 过氧化物酶27 Peroxidase 27 | 上调Up | 1.895 642 79 | 1.41×10-18 |
Dinv12377 | 过氧化物酶52 Peroxidase 52 | 上调Up | 1.911 382 699 | 0.001 561 24 |
Dinv13222 | 过氧化物酶17 Peroxidase 17 | 下调Down | -1.004 666 156 | 0.002 319 32 |
Dinv36329 | 过氧化物酶N Peroxidase N | 下调Down | -1.888 094 821 | 5.04×10-6 |
Dinv06626 | 木质素形成阴离子过氧化酶 Lignin-forming anionic peroxidase | 上调Up | 2.568 700 798 | 0.010 706 1 |
Dinv39392 | 花青素3-O-葡糖基转移酶5 Anthocyanidin 3-O-glucosyltransferase 5 | 上调Up | 1.051 221 111 | 6.76×10-9 |
Dinv23882 | 阿魏酰辅酶A正羟基化酶2 Feruloyl CoA ortho-hydroxylase 2 | 上调Up | 3.220 236 762 | 1.02×10-31 |
Dinv23884 | 阿魏酰辅酶A正羟基化酶2 Feruloyl CoA ortho-hydroxylase 2 | 上调Up | 3.605 091 407 | 8.94×10-11 |
Dinv13044 | β-葡萄糖苷酶11 Beta-glucosidase 11 | 上调Up | 2.002 038 447 | 9.03×10-5 |
novel.1358 | β-葡萄糖苷酶12 Beta-glucosidase 12 | 上调Up | 2.001 540 708 | 0.002 155 38 |
Dinv15038 | β-葡萄糖苷酶12 Beta-glucosidase 12 | 上调Up | 1.099 056 6 | 0.004 863 62 |
Dinv43480 | β-葡萄糖苷酶12 Beta-glucosidase 12 | 上调Up | 1.754 417 253 | 0.026 302 63 |
Dinv43482 | β-葡萄糖苷酶13 Beta-glucosidase 13 | 上调Up | 1.040 292 995 | 1.74×10-9 |
Dinv00375 | β-葡萄糖苷酶 BoGH3BBeta-glucosidase BoGH3B | 上调Up | 2.531 914 008 | 0.004 682 7 |
Dinv11980 | β-葡萄糖苷酶 BoGH3BBeta-glucosidase BoGH3B | 上调Up | 4.713 211 126 | 3.63×10-5 |
Dinv25096 | β-葡萄糖苷酶 BoGH3BBeta-glucosidase BoGH3B | 上调Up | 1.824 354 237 | 1.81×10-19 |
Dinv32836 | β-葡萄糖苷酶 BoGH3BBeta-glucosidase BoGH3B | 上调Up | 1.009 153 603 | 0.000 118 01 |
Dinv13045 | 萝卡辛糖苷酶 Raucaffricine-O-beta-D-glucosidase | 上调Up | 3.172 249 014 | 6.02×10-7 |
Dinv42534 | 萝卡辛糖苷酶 Raucaffricine-O-beta-D-glucosidase | 上调Up | 4.657 804 191 | 1.35×10-33 |
Dinv13427 | 萝卡辛糖苷酶 Raucaffricine-O-beta-D-glucosidase | 下调Down | -1.429 541 93 | 9.70×10-5 |
novel.1554 | β-葡萄糖苷酶12 Beta-glucosidase 12 | 下调Down | -1.136 799 964 | 0.001 879 18 |
Dinv36313 | β-葡萄糖苷酶12 Beta-glucosidase 12 | 下调Down | -1.758 193 | 6.50×10-7 |
Dinv34083 | β-葡萄糖苷酶40 Beta-glucosidase 40 | 下调Down | -1.053 398 192 | 0.005 758 |
表5
上调表达基因的KEGG分析
通路 Pathway | 上调基因数量 Number of up-regulated DEGs | P P value |
---|---|---|
苯丙烷类生物合成Phenylpropanoid biosynthesis | 34 | 1.13×10-14 |
二萜生物合成Diterpenoid biosynthesis | 9 | 2.61×10-6 |
氰基氨基酸代谢Cyanoamino acid metabolism | 12 | 6.64×10-6 |
光合作用-天线蛋白Photosynthesis-antenna proteins | 7 | 3.33×10-5 |
α-亚麻酸代谢alpha-Linolenic acid metabolism | 9 | 0.000 323 |
淀粉和蔗糖代谢Starch and sucrose metabolism | 19 | 0.000 332 |
油菜素甾醇生物合成Brassinosteroid biosynthesis | 5 | 0.000 564 |
苯丙氨酸代谢Phenylalanine metabolism | 8 | 0.000 982 |
角质、木栓质和蜡生物合成Cutin, suberine and wax biosynthesis | 5 | 0.003 323 |
植物-病原互作Plant-pathogen interaction | 19 | 0.003 603 |
1 | 蒋雪梅,胥晓,戚文华,等.盐胁迫下外施脯氨酸和磷肥对青杨雌雄幼苗生长及生理特性的影响[J].热带亚热带植物学报,2016,24(6):696-702. |
JIANG X M, XU X, QI W H,et al.Effects of exogenous proline and phosphate fertilizer on growth and physiological traits of female and male Populus cathayana seedlings under salt stress[J].Journal of Tropical and Subtropical Botany,2016,24(6):696-702. | |
2 | LUO L M, ZHANG P P, ZHU R H,et al.Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis [J].Frontiers in Plant Science,2017,8:1459. |
3 | LIU Q S, VETUKURI R R, XU W J,et al.Transcriptomic responses of dove tree(Davidia involucrata Baill.) to heat stress at the seedling stage[J].Forests,2019,10(8):656. |
4 | LIU Q S, FENG Z Q, XU W J,et al.Exogenous melatonin-stimulated transcriptomic alterations of Davidia involucrata seedlings under drought stress[J].Trees,2021,35:1025-1038. |
5 | 徐云飞,刘沁松,徐文娟,等.天然珙桐种群结构与动态特征在高低纬度地区的差异[J].植物研究,2020,40(6):855-866. |
XU Y F, LIU Q S, XU W J,et al.Differences in population structure and dynamic characteristics of Davidia involucrata Baill. between high and low latitude regions[J].Bulletin of Botanical Research,2020,40(6):855-866. | |
6 | 牛文娟,张涛,邓东周,等.珙桐繁殖技术及生长发育研究进展[J].植物生理学报,2013,49(10):1018-1022. |
NIU W J, ZHANG T, DENG D Z,et al.A review on reproductive technology and growing of Davidia involucrata Baill.[J].Plant Physiology Journal,2013,49(10):1018-1022. | |
7 | VEKEMANS D, VIAENE T, CARIS P,et al.Transference of function shapes organ identity in the dove tree inflorescence[J].New Phytologist,2012,193(1):216-228. |
8 | 孙贵佳,杨艳,刘西典,等.Na2CO3和NaCl胁迫对珙桐叶片光合特性影响的比较[J].西南师范大学学报(自然科学版),2014,39(11):66-70. |
SUN G J, YANG Y, LIU X D,et al.On comparison of stress from Na2CO3 and NaCl on photosynthetic characteristics of Davidia involucrata Baill.[J].Journal of Southwest China Normal University(Natural Science Edition),2014,39(11):66-70. | |
9 | 李润枝,靳晴,李召虎,等.水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J].作物学报,2020,46(11):1810-1816. |
LI R Z, JIN Q, LI Z H,et al.Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages[J].Acta Agronomica Sinica,2020,46(11):1810-1816. | |
10 | NADARAJAH K, ABDUL HAMID N W, ABDUL RAHMAN N S N.SA-mediated regulation and control of abiotic stress tolerance in rice[J].International Journal of Molecular Sciences,2021,22(11):5591. |
11 | 高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006:15-16. |
GAO J F.Experimental guidance for plant physiology[M].Beijing:Higher Education Press,2006:15-16. | |
12 | CHEN Y, MA T, ZHANG L S,et al.Genomic analyses of a “living fossil”:The endangered dove-tree[J].Molecular Ecology Resources,2020,20(3):756-769. |
13 | MA J, WANG Y, WANG L Y,et al.Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper(Capsicum annuum L.)[J].Molecular Biology Reports,2022,50(4):3593-3606. |
14 | 孙德智,韩晓日,彭靖,等.外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J].植物科学学报,2018,36(4):612-622. |
SUN D Z, HAN X R, PENG J,et al.Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J].Plant Science Journal,2018,36(4):612-622. | |
15 | 刘庆,董元杰,刘双,等.外源水杨酸(SA)对NaCl胁迫下棉花幼苗生理生化特性的影响[J].水土保持学报,2014,28(2):165-168,174. |
LIU Q, DONG Y J, LIU S,et al.Effects of exogenous salicylic acid on the physiological and biochemical characteristics of cotton seedlings under salt stress[J].Journal of Soil and Water Conservation,2014,28(2):165-168,174. | |
16 | 付乃鑫,贺明荣,诸葛玉平,等.外源SA对盐胁迫下冬小麦幼苗生长的缓解效应及其机理[J].中国农业大学学报,2019,24(3):10-17. |
FU N X, HE M R, ZHUGE Y P,et al.Effects and mechanisms of exogenous SA alleviating the growth of winter wheat seedlings under salt stress[J].Journal of China Agricultural University,2019,24(3):10-17. | |
17 | 周旋,申璐,肖霄,等.外源水杨酸对盐胁迫下茶树生长及抗氧化酶活性的影响[J].西北农业学报,2014,23(6):127-133. |
ZHOU X, SHEN L, XIAO X,et al.Effects of exogenous salicylic acid on growth and antioxidant enzyme activities of tea plant(Camellia sinensis) under salt stress[J].Acta Agriculturae Boreali-occidentalis Sinica,2014,23(6):127-133. | |
18 | 赵宝泉,邢锦城,王静,等.水杨酸对盐胁迫下杭白菊幼苗生长和生理特性的影响[J].吉林农业大学学报,2020,42(4):370-379. |
ZHAO B Q, XING J C, WANG J,et al.Effects of exogenous salicylic acid on growth and physiological properties of Chrysanthemum morifolium seedlings under salt stress[J].Journal of Jilin Agricultural University,2020,42(4):370-379. | |
19 | LI G Z, PENG X Q, WEI L T,et al.Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings[J].Gene,2013,529(2):321-325. |
20 | BAILLO E H, KIMOTHO R N, ZHANG Z B,et al.Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J].Genes,2019,10(10):771. |
21 | DAI W S, WANG M, GONG X Q,et al.The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs[J].New Phytologist,2018,219(3):972-989. |
22 | HAN D G, DU M, ZHOU Z Y,et al.Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis [J].International Journal of Molecular Sciences,2020,21(4):1198. |
23 | WANG N, QU C Z, WANG Y C,et al.MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels[J].Plant Cell,Tissue and Organ Culture,2017,131:283-293. |
24 | SONG Y S, YANG W J, FAN H,et al. TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat[J].Plant Science,2020,300:110624. |
25 | DONG N Q, LIN H X.Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J].Journal of Integrative Plant Biology,2021,63(1):180-209. |
26 | CHUN H J, BAEK D, CHO H M,et al.Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress[J].Plant Signaling and Behavior,2019,14(8):1625697. |
27 | DUAN A Q, TAO J P, JIA L L,et al.AgNAC1,a celery transcription factor,related to regulation on lignin biosynthesis and salt tolerance[J].Genomics,2020,112(6):5254-5264. |
28 | BABA S A, VISHWAKARMA R A, ASHRAF N.Functional characterization of CsBGlu12,a β-Glucosidase from Crocus sativus,provides insights into its role in abiotic stress through accumulation of antioxidant flavonols[J].Journal of Biological Chemistry,2017,292(11):4700-4713. |
[1] | 隋德宗, 王保松. 盐胁迫下乌桕无性系叶片的比较蛋白组学研究[J]. 植物研究, 2023, 43(5): 679-689. |
[2] | 王景哲, 牛朝奎, 梁馨元, 申晨静, 尹静. 水杨酸在白桦苗期抵御盐碱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 379-387. |
[3] | 申晨静, 武文博, 耿露冉, 王福龙, 赵鹏舟, 宋金辉, 詹亚光, 尹静. 水杨酸、纳米氧化锌和促生真菌YZ13-1在水曲柳抵御干旱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 388-395. |
[4] | 廖诗贤, 王宇婷, 董立本, 顾咏梅, 贾丰璘, 姜廷波, 周博如. 小黑杨转录因子PsnbZIP1应答盐胁迫功能分析[J]. 植物研究, 2023, 43(2): 288-299. |
[5] | 刘森尧, 贾丰璘, 国庆, 樊高锋, 周博如, 姜廷波. 小黑杨转录因子PsnbHLH162基因在盐和低温胁迫下应答分析[J]. 植物研究, 2023, 43(2): 300-310. |
[6] | 杨洪, 王立丰, 代龙军, 郭冰冰. 死皮对橡胶树树皮线粒体超微结构及活性氧代谢的影响[J]. 植物研究, 2023, 43(1): 69-75. |
[7] | 李梦烁, 刘莹泽, 鲁焕, 强胜. 基因转录介导同质园条件下拟南芥不同地理种群的光合能力分化[J]. 植物研究, 2023, 43(1): 90-99. |
[8] | 岳莉然, 刘颖婕, 刘晨旭, 周蕴薇. 响应盐胁迫调控的露地菊miR398a的克隆及功能研究[J]. 植物研究, 2022, 42(6): 986-996. |
[9] | 覃碧, 刘明洋, 王萌, 王立丰, 黄飞. 橡胶树DELLA基因HbRGL1的克隆与表达分析[J]. 植物研究, 2022, 42(6): 997-1004. |
[10] | 代龙军, 刘明洋, 阳江华, 周凯, 郭冰冰, 杨洪, 王立丰. 巴西橡胶树胶乳中DUF1262结构域蛋白结构与基因表达分析[J]. 植物研究, 2022, 42(5): 802-810. |
[11] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StNPR4基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 821-829. |
[12] | 王欢, 徐云飞, 刘一伯, 刘沁松, 徐文娟, 龙芸, 胥晓. 珙桐—灯台树枝和叶的水提物对白菜种子萌发和幼苗生长的化感效应[J]. 植物研究, 2022, 42(5): 866-875. |
[13] | 陈娇娆, 续旭, 胡章立, 杨爽. 植物感受盐胁迫及相关钙信号的研究进展[J]. 植物研究, 2022, 42(4): 713-720. |
[14] | 陈思思, 谢牧洪, 崔茂凯, 李文凯, 徐正刚, 贾彩霞, 杨桂燕. 构树转录因子BpbZIP1的鉴定及镉胁迫响应分析[J]. 植物研究, 2022, 42(3): 394-402. |
[15] | 程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||