植物研究 ›› 2023, Vol. 43 ›› Issue (3): 351-360.doi: 10.7525/j.issn.1673-5102.2023.03.004
收稿日期:
2022-10-04
出版日期:
2023-05-20
发布日期:
2023-05-11
通讯作者:
姜静
E-mail:jiangjing1960@126.com
作者简介:
曹俐(1998—),女,硕士研究生,主要从事林木遗传育种研究。
基金资助:
Li CAO1, Yunli YANG1, Tianfang LI2, Jing JIANG1()
Received:
2022-10-04
Online:
2023-05-20
Published:
2023-05-11
Contact:
Jing JIANG
E-mail:jiangjing1960@126.com
About author:
CAO Li(1998—),female,postgraduate,research on genetic breeding of forest trees.
Supported by:
摘要:
通过研究转BpGLK(Bpev01.c0167.g0013.m0001)裂叶桦(Betula pendula ‘Dalecarlica’)生长期内的叶色变异规律,探讨BpGLK抑制表达使植株叶绿素含量降低是否对植株生长产生影响。以2年生的转BpGLK裂叶桦为试验材料,检测外源基因的稳定性及相对表达量,测定叶色参数、叶绿素相对含量及叶绿素含量,分析叶色相关参数的时序变化规律及生长特性。结果显示,外源基因稳定存在于2年生转基因株系的基因组中,且GLK表达量显著下调(P<0.05);在整个生长期内,RE1~5株系的叶色亮度及叶片黄色程度均显著高于WT株系(P<0.05),叶绿素相对含量、叶绿素a、叶绿素b和总叶绿素含量均低于或显著低于WT株系(P<0.05),但叶绿素a与叶绿素b的比值高于或显著高于WT株系(P<0.05)。转基因株系的苗高生长没有受到显著影响,其中RE4和RE5株系的以上性状均优于其他株系,是后续园林造景推广应用的首选株系。
中图分类号:
曹俐, 杨蕴力, 李天芳, 姜静. 转BpGLK裂叶桦叶色及生长变异分析[J]. 植物研究, 2023, 43(3): 351-360.
Li CAO, Yunli YANG, Tianfang LI, Jing JIANG. Analysis on Leaf Color and Growth Variation of Transgenic BpGLK Betula pendula ‘Dalecarlica'[J]. Bulletin of Botanical Research, 2023, 43(3): 351-360.
表1
引物序列
引物 Primer | 序列(5′→3′) Sequence(5′→3′) | 扩增片段长度 Amplified fragment length/bp |
---|---|---|
pFGC5941_CIS_F | CATGCCATGGGCACAGAAGGTTTGTGCAAG | 414 |
pFGC5941_CIS_R | TTGGCGCGCCCCATACATCTGCCTTCTCTGG | |
pFGC5941_Anti_F | GCTCTAGAGCACAGAAGGTTTGTGCAAG | 429 |
pFGC5941_Anti_R | CGCGGATCCCCATACATCTGCCTTCTCTGG | |
Bar-F | TTAGATCTCGGTGACGGGCA | 500 |
Bar-R | CGGTCTGCACCATCGTCAAC |
表3
参试株系叶片 L*值、 b*值时序变化
指标 Indexes | 株系 Lines | 5月15日 May 15th | 6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th |
---|---|---|---|---|---|
L*值 L*-value | WT | 37.42±0.42c | 40.41±0.50d | 37.36±0.49c | 36.68±0.66b |
RE1 | 43.35±0.64a | 47.10±0.36a | 47.15±0.47a | 42.42±1.01a | |
RE2 | 43.02±0.35a | 44.19±0.37b | 44.07±1.06ab | 42.30±1.13a | |
RE3 | 44.11±0.63a | 44.43±0.60b | 40.78±2.66b | 43.35±1.20a | |
RE4 | 42.23±0.69a | 43.21±0.54bc | 43.59±0.79b | 41.02±0.96a | |
RE5 | 42.00±0.54a | 42.06±0.33c | 41.64±0.99b | 42.71±1.05a | |
RE6 | 38.71±0.28bc | 36.85±0.76f | 36.90±0.71c | 38.03±0.63b | |
RE7 | 42.87±1.51a | 39.26±0.41de | 36.43±0.98c | 37.60±0.83b | |
RE8 | 41.35±2.57ab | 38.19±0.59ef | 36.54±0.80c | 35.87±1.03b | |
b*值 b*-value | WT | 19.27±0.64d | 19.86±0.81e | 19.63±0.64d | 16.26±1.08cd |
RE1 | 29.38±1.23b | 31.72±0.61a | 35.40±0.69a | 26.16±1.37ab | |
RE2 | 29.07±0.78bc | 27.96±0.38bc | 33.50±1.04a | 27.99±1.39a | |
RE3 | 31.72±0.48a | 29.72±0.78ab | 35.41±0.40a | 28.48±0.94a | |
RE4 | 27.18±0.78c | 26.97±0.86cd | 30.29±1.01b | 23.96±1.93b | |
RE5 | 27.10±0.80c | 25.73±0.42d | 27.12±1.67c | 26.18±1.54ab | |
RE6 | 20.64±0.47d | 18.90±1.08ef | 20.46±0.99d | 18.17±1.16cd | |
RE7 | 20.91±0.37d | 20.64±0.52e | 20.19±0.99d | 18.82±1.26c | |
RE8 | 21.43±0.58d | 17.59±0.67f | 20.36±0.71d | 14.79±0.69d |
表4
参试株系叶绿素相对含量(SPAD值)时序变异
株系 Lines | 5月15日 May 15th | 6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th |
---|---|---|---|---|
WT | 42.60±0.97a | 31.94±0.63a | 34.94±0.63bc | 39.27±1.28a |
RE1 | 37.09±1.75bc | 23.97±1.02d | 31.37±0.90de | 27.03±1.36c |
RE2 | 33.55±0.93cd | 26.60±1.47cd | 31.73±1.09de | 26.78±0.73c |
RE3 | 32.27±0.78d | 24.41±0.71d | 30.65±0.81e | 27.88±1.08c |
RE4 | 35.41±0.92cd | 24.77±0.65d | 34.14±0.96cd | 28.30±1.15c |
RE5 | 40.68±0.93ab | 25.60±0.67d | 33.57±0.60cde | 22.36±0.76d |
RE6 | 41.49±1.54a | 29.76±0.71ab | 39.19±1.70a | 39.87±2.39a |
RE7 | 42.87±1.51a | 28.72±0.95bc | 37.51±0.83ab | 36.43±1.02ab |
RE8 | 41.35±2.57a | 28.32±0.75bc | 36.05±0.77bc | 35.38±1.29b |
表5
参试株系叶片叶绿素a、叶绿素b质量分数的比较
株系 Lines | 叶绿素a Chlorophyll a/(mg·g-1) | 叶绿素b Chlorophyll b/(mg·g-1) | 叶绿素a与叶绿素b比值 Ratio of Chlorophyll a to Chlorophyll b | ||||||
---|---|---|---|---|---|---|---|---|---|
6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th | 6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th | 6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th | |
WT | 2.81±0.00ab | 2.72±0.03a | 2.81±0.00b | 1.36±0.01b | 1.22±0.04a | 1.29±0.00c | 2.07±0.02c | 2.23±0.05d | 2.19±0.00c |
RE1 | 1.36±0.01f | 1.58±0.01g | 2.08±0.03e | 0.19±0.00e | 0.44±0.01f | 0.67±0.03e | 7.27±0.08a | 3.56±0.01b | 3.10±0.07a |
RE2 | 1.66±0.01e | 1.75±0.03e | 2.66±0.02c | 0.24±0.04e | 0.68±0.06d | 1.00±0.02d | 7.24±1.26a | 2.63±0.20c | 2.67±0.04b |
RE3 | 1.99±0.01d | 1.36±0.02h | 2.06±0.00e | 0.76±0.03c | 0.31±0.01g | 0.63±0.01e | 2.63±0.10bc | 4.43±0.15a | 3.25±0.03a |
RE4 | 2.08±0.05cd | 1.93±0.01d | 2.55±0.02d | 0.73±0.13c | 0.54±0.00e | 0.96±0.01d | 3.08±0.61bc | 3.58±0.00b | 2.65±0.02b |
RE5 | 2.17±0.10c | 1.64±0.01f | 2.64±0.05c | 0.54±0.04d | 0.38±0.01fg | 1.20±0.14c | 4.03±0.11b | 4.31±0.09a | 2.25±0.20c |
RE6 | 2.91±0.01a | 2.17±0.01c | 2.65±0.05c | 1.68±0.03a | 0.86±0.01c | 1.58±0.11b | 1.74±0.04c | 2.51±0.03cd | 1.70±0.15d |
RE7 | 2.71±0.06b | 2.63±0.04b | 2.98±0.01a | 1.26±0.08b | 1.08±0.04b | 1.51±0.01b | 2.16±0.09c | 2.44±0.12cd | 1.98±0.01c |
RE8 | 2.79±0.03ab | 2.71±0.01a | 3.00±0.00a | 1.32±0.07b | 1.17±0.02a | 2.03±0.03a | 2.13±0.15c | 2.32±0.02cd | 1.48±0.02d |
表6
参试株系叶片总叶绿素、类胡萝卜素质量分数的比较
株系 Lines | 总叶绿素 Total Chlorophyll/(mg·g-1) | 类胡萝卜素 Carotenoids/(mg·g-1) | ||||
---|---|---|---|---|---|---|
6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th | 6月15日 Jun. 15th | 7月15日 Jul. 15th | 9月15日 Sep. 15th | |
WT | 4.17±0.01b | 3.94±0.07a | 4.10±0.00c | 0.41±0.00abc | 0.43±0.01b | 0.48±0.00ab |
RE1 | 1.55±0.01e | 2.02±0.02e | 2.75±0.06f | 0.35±0.00cd | 0.32±0.00e | 0.41±0.00bc |
RE2 | 1.90±0.04d | 2.42±0.09d | 3.66±0.04de | 0.42±0.02ab | 0.32±0.01e | 0.53±0.00a |
RE3 | 2.75±0.03c | 1.67±0.03f | 2.70±0.01f | 0.35±0.01cd | 0.32±0.00e | 0.45±0.00bc |
RE4 | 2.81±0.18c | 2.47±0.01d | 3.51±0.03e | 0.36±0.04bcd | 0.35±0.01d | 0.45±0.00bc |
RE5 | 2.71±0.14c | 2.02±0.01e | 3.83±0.19d | 0.46±0.01a | 0.37±0.00c | 0.39±0.04c |
RE6 | 4.60±0.02a | 3.03±0.02c | 4.23±0.10c | 0.33±0.01d | 0.39±0.00c | 0.32±0.06d |
RE7 | 3.97±0.13b | 3.72±0.01b | 4.48±0.02b | 0.42±0.02ab | 0.43±0.01b | 0.46±0.00abc |
RE8 | 4.11±0.05b | 3.88±0.02a | 5.04±0.03a | 0.39±0.03bcd | 0.46±0.01a | 0.28±0.01d |
表7
转基因裂叶桦苗高的Logistic模型
株系 Lines | 封顶后苗高实测值 Measured seedling height after capping/cm | R2 | 苗木开始生长时苗高 Seedling height when it starts to grow/cm | 苗木停止生长时苗高 Seedling height when it ceases to grow/cm | 速生点(t0) Fast growth point/d | 苗高速生点处生长速度 Seedling growth at high growth point/(cm·d-1) |
---|---|---|---|---|---|---|
WT | 247.00c | 0.998 | 105.27 | 247.00 | 171 | 1.698 |
RE1 | 244.79c | 0.998 | 123.60 | 244.79 | 175 | 1.442 |
RE2 | 245.93bc | 0.996 | 122.73 | 245.93 | 175 | 1.393 |
RE3 | 215.71d | 0.999 | 112.87 | 215.71 | 177 | 1.353 |
RE4 | 281.03ab | 0.984 | 113.51 | 281.03 | 182 | 1.602 |
RE5 | 269.92c | 0.998 | 109.53 | 269.92 | 178 | 2.102 |
RE6 | 285.71a | 0.999 | 119.33 | 285.71 | 179 | 2.111 |
RE7 | 271.55bc | 0.997 | 115.00 | 271.55 | 175 | 1.805 |
RE8 | 259.45c | 0.998 | 99.00 | 259.45 | 177 | 2.260 |
表8
参试株系速生期生长参数
株系 Lines | 速生点(t0) Fast growth point/d | 速生持续时长 Duration time/d | 生长期参数Parameters in the growth stage | ||
---|---|---|---|---|---|
苗高平均生长量(GR) Average growth of seedling height/cm | 苗高日生长量均值(GD) Mean daily growth of seedlings height/(cm·d-1) | 速生期生长量比率 Biomass ratio of fast growth period/% | |||
WT | 171 | 59 | 87.911 | 1.490 | 56.56 |
RE1 | 175 | 65 | 81.786 | 1.258 | 57.42 |
RE2 | 175 | 74 | 90.193 | 1.219 | 56.80 |
RE3 | 177 | 53 | 62.827 | 1.185 | 57.02 |
RE4 | 182 | 75 | 104.902 | 1.399 | 57.23 |
RE5 | 178 | 53 | 97.511 | 1.840 | 57.41 |
RE6 | 179 | 54 | 100.060 | 1.853 | 56.81 |
RE7 | 175 | 60 | 94.761 | 1.579 | 57.23 |
RE8 | 177 | 49 | 96.984 | 1.979 | 57.36 |
1 | JENKINS M T.A second gene producing golden plant color in maize[J].The American Naturalist,1926,60(670):484-488. |
2 | ROSSINI L, CRIBB L, MARTIN D J,et al.The maize golden2 gene defines a novel class of transcriptional regulators in plants[J].The Plant Cell,2001,13(5):1231-1244. |
3 | NGUYEN C V, VREBALOV J T, GAPPER N E,et al.Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening[J].The Plant Cell,2014,26(2):585-601. |
4 | KOBAYASHI K, SASAKI D, NOGUCHI K,et al.Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors[J].Plant & Cell Physiology,2013,54(8):1365-1377. |
5 | CHEN M, JI M L, WEN B B,et al.Golden 2-like transcription factors of plants[J].Frontiers in Plant Science,2016,7:1509. |
6 | HAN X Y, LI P X, ZOU L J,et al.Golden2-like transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis [J].Biochemical and Biophysical Research Communications,2016,477(4):626-632. |
7 | MURMU J, WILTON M, ALLARD G,et al. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis,as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea[J].Molecular Plant Pathology,2014,15(2):174-184. |
8 | POWELL A L T, NGUYEN C V, HILL T,et al.Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development[J].Science,2012,336(6089):1711-1715. |
9 | 赵峥畑,张晓璐,程堂仁,等.连翘GLK基因家族鉴定及响应光照表达分析[J].河南农业大学学报,2022,56(5):759-769. |
ZHAO Z T, ZHANG X L, CHENG T R,et al.Identification and expression analysis in response to light of GLK gene family in Forsythia [J].Journal of Henan Agricultural University,2022,56(5):759-769. | |
10 | LI Y D, GU C R, GANG H X,et al.Generation of a golden leaf triploid poplar by repressing the expression of GLK genes[J].Forestry Research,2021,1:3. |
11 | GANG H X, LIU G F, CHEN S,et al.Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B.pendula)[J].Forests,2019,10(2):120. |
12 | 梅淑芳.彩叶马棘的培育与研究[D].杭州:浙江大学,2008. |
MEI S F.Development and studies of colorful leaves of plants Indigofera Pseudotinctoria Mats[D].Hangzhou:Zhejiang University,2008. | |
13 | 邵京.彩叶植物在城市园林景观中的应用:以南京市为例[J].安徽农业科学,2020,48(15):119-121. |
SHAO J.The application of color-leafed plants in urban landscape—taking Nanjing for example[J].Journal of Anhui Agricultural Sciences,2020,48(15):119-121. | |
14 | 潘晶晶,董胜君.金叶复叶槭叶色时序性变化研究[J].经济林研究,2021,39(3):215-226. |
PAN J J, DONG S J.The time-order change of leaf color of Acer negundo ‘Aurea’[J].Non-wood Forest Research,2021,39(3):215-226. | |
15 | 叶威,李强,陈颖,等.雌、雄株和金叶银杏光合生理及黄酮成分年动态变化研究[J].南京林业大学学报(自然科学版),2022,46(4):77-86. |
YE W, LI Q, CHEN Y,et al.Annual dynamic changes in photosynthetic physiology and flavonoid components in female,male and golden-leaf Ginkgo biloba trees[J].Journal of Nanjing Forestry University (Natural Science Edition),2022,46(4):77-86. | |
16 | 刘易超,左力辉,冯树香,等.中华金叶榆不同位置叶片呈色分析[J/OL].分子植物育种(2022-05-30)[2022-09-29].. |
LIU Y C, ZUO L H, FENG S X,et al.Research on the color generated of leaf at different positions of Ulmus pumila ‘ZhonghuaJinye’[J/OL].Molecular Plant Breeding,(2022-05-30)[2022-09-29].. | |
17 | 任凤伟.辽宁省裂叶垂枝桦适宜栽培区研究初报[J].防护林科技,2016(3):25-26,29. |
REN F W.Suitable cultivation area for Betula pendula in Liaoning Province[J].Protection Forest Science and Technology,2016(3):25-26,29. | |
18 | 杨蕴力.裂叶桦转BpGLK基因的研究[D].哈尔滨:东北林业大学,2021. |
YANG Y L.Research on the genetic transformation of BpGLK in Betula pendula ‘Dalecarlica’[D].Harbin:Northeast Forestry University,2021. | |
19 | 程贵文,龚洪恩,颜送宝,等.油茶叶绿素提取方法的比较研究[J].湖北林业科技,2017,46(6):11-13,58. |
CHENG G W, GONG H E, YAN S B,et al.Comparison of chlorophyll extraction methods in Camellia oleifera [J].Hubei Forestry Science and Technology,2017,46(6):11-13,58. | |
20 | 任烁淇,刘冰洋,李雪莹,等.白桦黄叶突变株叶色变化规律及苗高生长特性分析[J].植物研究,2018,38(6):852-859. |
REN S Q, LIU B Y, LI X Y,et al.Analysis of leaf color variation and height growth characteristics of yellow-green leaf mutant in Birch[J].Bulletin of Botanical Research,2018,38(6):852-859. | |
21 | BIAN X Y, QU C, ZHANG M M,et al.Transcriptome analysis provides new insights into leaf shape variation in Birch[J].Trees,2019,33(5):1265-1281. |
22 | FITTER D W, MARTIN D J, COPLEY M J,et al.GLK gene pairs regulate chloroplast development in diverse plant species[J].The Plant Journal,2002,31(6):713-727. |
23 | KOBAYASHI K, BABA S, OBAYASHI T,et al.Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis [J].The Plant Cell,2012,24(3):1081-1095. |
24 | 李霞.过表达玉米GLK基因提高水稻光合作用和光抑制耐性的生理机制[D].北京:中国农业科学院,2020. |
LI X.Physiological mechanisms of overexpression of maize GLK genes in improving photosynthesis and reducing photoinhibition in rice[D].Beijing:Chinese Academy of Agricultural Sciences,2020. | |
25 | 周蒋毅.水稻IPS1基因调控光合作用的分子机制研究[D].金华:浙江师范大学,2020. |
ZHOU J Y.Molecular mechanism of IPS1 regulating photosynthesis[D].Jinhua:Zhejiang Normal University,2020. | |
26 | CHEN M, MISHRA S, HECKATHORN S A,et al.Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis,carbohydrate metabolism,and protein synthesis[J].Journal of Plant Physiology,2014,171(3/4):235-242. |
27 | SACK L, GRUBB P J, MARAÑÓN T.The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern spain[J].Plant Ecology,2003,168(1):139-163. |
28 | 顾骏飞,周振翔,李志康,等.水稻低叶绿素含量突变对光合作用及产量的影响[J].作物学报,2016,42(4):551-560. |
GU J F, ZHOU Z X, LI Z K,et al.Effects of the mutant with low chlorophyll content on photosynthesis and yield in rice[J].Acta Agronomica Sinica,2016,42(4):551-560. | |
29 | 李瑞,周玮,陆巍.低叶绿素b水稻叶片自然衰老过程中光合作用与叶绿素荧光参数的变化[J].南京农业大学学报,2009,32(2):10-14. |
LI R, ZHOU W, LU W.Changes in photosynthesis and chlorophyll fluorescence parameters during rice leaf senescence in low chlorophyll b mutant[J].Journal of Nanjing Agricultural University,2009,32(2):10-14. | |
30 | 李君霞,秦娜,朱灿灿,等.谷子黄叶色突变体光合特性研究[J].核农学报,2021,35(9):1964-1970. |
LI J X, QIN N, ZHU C C,et al.Study on photosynthetic characteristics of Foxtail Millet mutant with yellow leaf colour[J].Journal of Nuclear Agricultural Sciences,2021,35(9):1964-1970. | |
31 | ORT D R, MERCHANT S S, ALRIC J,et al.Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(28):8529-8536. |
32 | ORT D R, ZHU X G, MELIS A.Optimizing antenna size to maximize photosynthetic efficiency[J].Plant Physiology,2011,155(1):79-85. |
33 | GANG H X, LI R H, ZHAO Y M,et al.Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development[J].Journal of Experimental Botany,2019,70(12):3125-3138. |
34 | 刘佳琦,宋逸欣,成星川,等.转BpGLK1基因白桦叶色变异规律及生长特性分析[J].江西农业学报,2021,33(8):17-23. |
LIU J Q, SONG Y X, CHENG X C,et al.Analysis of leaf color variation and growth characteristics of transgenic BpGLK1 birch[J].Acta Agriculturae Jiangxi,2021,33(8):17-23. |
[1] | 胡文海, 肖宜安. 基于叶绿素荧光成像及荧光参数分布特征的叶片光合异质性定量分析[J]. 植物研究, 2022, 42(6): 1052-1061. |
[2] | 杜习武, 秦俊, 叶康, 胡永红, 陶懿伟, 彭勇政, 沈雁翔, 梁言, 曾丽. 淹水胁迫对星花玉兰及其品种光合特性的影响[J]. 植物研究, 2022, 42(3): 483-491. |
[3] | 胡文海, 肖宜安, 闫小红, 叶子飘, 曾建军, 李晓红. 越冬期红叶石楠和桂花防御低温强光伤害的光保护机制[J]. 植物研究, 2021, 41(6): 938-946. |
[4] | 石匡正, 张朝晖, 何春梅, 王智慧. 毕节吞天井边缘地带不同郁闭度环境对泥炭藓叶绿素荧光特性及蓄水量的影响[J]. 植物研究, 2021, 41(2): 262-269. |
[5] | 胡文海, 闫小红, 李晓红, 曹灶桂. 24-表油菜素内酯对干旱胁迫下辣椒叶片快速叶绿素荧光诱导动力学曲线的影响[J]. 植物研究, 2021, 41(1): 53-59. |
[6] | 李艺迪, 顾宸瑞, 冮慧欣, 刘桂丰, 陈肃, 姜静. 转基因金叶银中杨叶色及生长变异分析[J]. 植物研究, 2020, 40(6): 897-905. |
[7] | 李潺, 张翔, 郑兰, 常成龙, 刘彩霞, 郑密, 由香玲. 小黑杨PsnHB22基因在烟草中的遗传转化研究[J]. 植物研究, 2020, 40(5): 760-767. |
[8] | 孙旺旺, 孟宪敏, 徐秀源, 伍敏华, 秦梦阳, 林梦梦, 张新妍, 岳国忠. 金叶连翘叶片色素含量和解剖结构研究[J]. 植物研究, 2020, 40(3): 321-329. |
[9] | 高叶青, 任冬梅. 稀土元素对短叶对齿藓生理生化的研究[J]. 植物研究, 2018, 38(5): 675-681. |
[10] | 谢佳佳, 芦丽娜, 石岱龙, 王庆文, 贾凌云, 冯汉青. 交替呼吸途径对CuCl2胁迫下菜豆叶片光系统Ⅱ的保护作用[J]. 植物研究, 2018, 38(1): 75-80. |
[11] | 韩燕青, 刘鑫, 胡维平, 张平究, 邓建才, 成泽霖. CO2浓度升高对苦草(Vallisneria natans)叶绿素荧光特性的影响[J]. 植物研究, 2017, 37(1): 45-51. |
[12] | 田武英, 焦青松, 石岱龙, 孙坤, 贾凌云, 冯汉青. 胞外ATP通过H2O2对菜豆叶片光系统Ⅱ光化学特性的系统性影响[J]. 植物研究, 2016, 36(3): 368-373. |
[13] | 周琳;张会慧;魏殿文;张悦*. 施肥对蓝莓植株生长、叶片叶绿素荧光特性和果实品质的影响[J]. 植物研究, 2015, 35(6): 854-859. |
[14] | 任洁;王慧梅*;王文杰;曲丹;王琼;仲召亮. 温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响[J]. 植物研究, 2014, 34(6): 758-764. |
[15] | 李迎春;杨清平;陈双林*;郭子武;李应;庄明浩. 光照对多花黄精生长、光合和叶绿素荧光参数特征的影响[J]. 植物研究, 2014, 34(6): 776-781. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||