欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2019, Vol. 39 ›› Issue (6): 890-898.doi: 10.7525/j.issn.1673-5102.2019.06.012

• 研究报告 • 上一篇    下一篇

样本量对云南松幼苗生物量模型构建及预估精度的影响

李亚麒1, 许玉兰1,2, 李伟3, 孙继伟2, 汪梦婷2, 蔡年辉1,2   

  1. 1. 西南林业大学西南山地森林资源保育与利用教育部重点实验室, 昆明 650224;
    2. 西南林业大学云南省高校林木遗传改良与繁育重点实验室, 昆明 650224;
    3. 云南吉成园林科技股份有限公司, 弥勒 652300
  • 收稿日期:2019-04-29 出版日期:2019-11-05 发布日期:2019-11-16
  • 通讯作者: 蔡年辉 E-mail:cainianhui@sohu.com
  • 作者简介:李亚麒(1994-),女,硕士研究生,主要从事森林培育的研究。
  • 基金资助:
    国家自然科学基金(31760204,31860203);云南省林学一流学科建设经费资助;云南省高校林木遗传改良与繁育重点实验室基金(YNGBT201702,YNGBS201704)

Effect of Sample Size on the Precision of Biomass Model of Pinus yunnanensis Seedlings

LI Ya-Qi1, XU Yu-Lan1,2, LI Wei3, SUN Ji-Wei2, WANG Meng-Ting2, CAI Nian-Hui1,2   

  1. 1. Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China(Southwest Forestry University), Ministry of Education, Kunming 650224;
    2. Key Laboratory for Forest Genetic and Tree Improvement&Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224;
    3. Yunnan Jicheng Landscape Technology Co., Ltd., Mile 652300
  • Received:2019-04-29 Online:2019-11-05 Published:2019-11-16
  • Supported by:
    National Natural Science Foundation of China(31760204,31860203);Funds for the Construction of First-class Forestry Discipline in Yunnan Province;Key Laboratory For Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province(YNGBT201702,YNGBS201704)

摘要: 为探究不同样本量对生物量模型构建及建模精度的影响,以实际调查的20个家系,共615株云南松幼苗为例,通过编写计算机程序建立进行简单随机抽样,构建不同样本量云南松幼苗各器官及单株生物量异速生长方程。利用决定系数(R2)、估计值标准误(SEE)、均方根误差(RMSE)、总相对误差(RS)及平均误差绝对值(MAB),对模型拟合优度与精度进行比较分析。结果表明:幂函数方程可较好地用于估测云南松幼苗生物量;随着样本量的增加模型精度评估指数MAB呈幂函数形式逐渐减小;当样本数量小于200时MAB较为敏感,模型精度较差,样本量大于200时,其精度随样本量逐渐增加,但变化幅度逐步减小并趋于稳定。因此,根据MAB的变化趋势,样本量达到200时可以构建精度较高且稳定模型。

关键词: 云南松, 样本量, 异速生长方程, 预测精度

Abstract: A total of 615 Pinus yunnanensis seedlings from 20 families were selected to study the influence of different sample sizes on biomass model construction and modelling accuracy. Different sampling sizes of 20 families of P.yunnanensis were used to establish the allometric equation of each organ and individual biomass of P.yunnanensis seedlings, after a sampling frame was established. The goodness of fit and accuracy of the optimal models were compared by the coefficient determination(R2), standard error of estimated value(SEE), root mean square error(RMSE), total relative error(RS) and mean absolute error(MAB). The allometric equation displayed a good biomass estimate of P.yunnanensis seedlings. With the increase of the sample size, the model precision evaluation index MAB decreases gradually in the form of power function. When the sample size is less than 200, MAB is more sensitive and the modeling accuracy is poor. If the sample size reaches about 200, the accuracy reaches a stable state.

Key words: Pinus yunnanensis, sample size, allometric equation, prediction accuracy

中图分类号: