植物研究 ›› 2023, Vol. 43 ›› Issue (4): 481-492.doi: 10.7525/j.issn.1673-5102.2023.04.001
• 研究综述 • 下一篇
收稿日期:
2022-09-26
出版日期:
2023-07-20
发布日期:
2023-07-03
通讯作者:
杜超
E-mail:duchao@imnu.edu.cn
作者简介:
倪馨宇(1998—),女,硕士研究生,主要从事植物逆境生理及分子生物学研究。
基金资助:
Xinyu NI1,2, Junying HE1,2, Mengjiao YAN3, Chao DU1,2()
Received:
2022-09-26
Online:
2023-07-20
Published:
2023-07-03
Contact:
Chao DU
E-mail:duchao@imnu.edu.cn
About author:
NI Xinyu(1998—),female,postgraduate,majoring in the research of physiological and molecular biology of plant stress.
Supported by:
摘要:
珍稀濒危植物是自然界当中的重要植物资源,对研究植物系统进化、生态环境恢复、植物抗逆生理、挖掘优异抗逆基因等方面具有重要意义,但大部分珍稀濒危植物的遗传信息缺乏,严重制约了其保护和利用工作的开展。珍稀濒危植物的基因组较大、基因信息复杂、遗传背景不清晰,因此对其进行基因组测序相对困难,而RNA-Seq技术拥有可以对无参基因组物种直接进行测序的优势,近年来在珍稀濒危植物的研究中得到青睐。文章简介了RNA-Seq技术,综合近年研究总结了RNA-Seq技术在珍稀濒危植物抗逆机制、次生代谢、生长发育调控及分子标记开发4个主要应用方向的研究进展。此外,还对RNA-Seq技术在珍稀濒危植物研究中的应用前景进行了展望,同时在此基础上提出珍稀濒危植物转录组新研究思路的可能性。
中图分类号:
倪馨宇, 贺俊英, 燕孟娇, 杜超. RNA-Seq技术在珍稀濒危植物研究中的应用进展[J]. 植物研究, 2023, 43(4): 481-492.
Xinyu NI, Junying HE, Mengjiao YAN, Chao DU. Application Progress of RNA-Seq Technology in Rare and Endangered Plants[J]. Bulletin of Botanical Research, 2023, 43(4): 481-492.
1 | 覃海宁,赵莉娜.中国高等植物濒危状况评估[J].生物多样性,2017,25(7):689-695. |
QIN H N, ZHAO L N.Evaluating the threat status of higher plants in China[J].Biodiversity Science,2017,25(7):689-695. | |
2 | 谭聃,欧铜.第三代测序技术的研究进展与临床应用[J].生物工程学报,2022,38(9):3121-3130. |
TAN D,OU T.Research progress and clinical application of the third-generation sequencing techniques[J].Chinese Journal of Biotechnology,2022,38(9):3121-3130. | |
3 | 刘玉洁,胡海洋.第三代测序技术及其在生物学领域的革新[J].科技与创新,2021(5):34-39. |
LIU Y J, HU H Y.Third-generation sequencing techniques and its innovation in the field of biology[J].Science and Technology & Innovation,2021(5):34-39. | |
4 | 刘伟,郭光艳,秘彩莉.转录组学主要研究技术及其应用概述[J].生物学教学,2019,44(10):2-5. |
LIU W, GUO G Y, BEI C L.A summary of the main research techniques of transcriptology and their applications[J].Biology Teaching,2019,44(10):2-5. | |
5 | LOCKHART D J, WINZELER E A.Genomics,gene expression and DNA arrays[J].Nature,2000,405(6788):827-836. |
6 | VELCULESCU V E, ZHANG L, ZHOU W,et al.Characterization of the yeast transcriptome[J].Cell,1997,88(2):243-251. |
7 | 周华,张新,刘腾云,等.高通量转录组测序的数据分析与基因发掘[J].江西科学,2012,30(5):607-611. |
ZHOU H, ZHANG X, LIU T Y,et al.Data processing and gene discovery of high-throughput transcriptome sequencing[J].Jiangxi Science,2012,30(5):607-611. | |
8 | 张春兰,秦孜娟,王桂芝,等.转录组与RNA-Seq技术[J].生物技术通报,2012(12):51-56. |
ZHANG C L, QIN Z J, WANG G Z,et al.Transcriptome and RNA-Seq technology[J].Biotechnology Bulletin,2012(12):51-56. | |
9 | WANG Z, GERSTEIN M, SNYDER M.RNA-Seq:a revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10(1):57-63. |
10 | 杜超.WRKY转录因子家族在植物响应逆境胁迫中的功能及应用[J].草业科学,2021,38(7):1287-1300. |
DU C.Function and application of the WRKY transcription factor superfamily in plant response to stresses[J].Pratacultural Science,2021,38(7):1287-1300. | |
11 | LI L, LI M M, QI X W,et al. De novo transcriptome sequencing and analysis of genes related to salt stress response in Glehnia littoralis [J].PeerJ,2018,6:e5681. |
12 | MALA D, AWASTHI S, SHARMA N K,et al.Comparative transcriptome analysis of Rheum australe,an endangered medicinal herb,growing in its natural habitat and those grown in controlled growth chambers[J].Scientific Reports,2021,11(1):3702. |
13 | SUN Y B, LIU L H, SUN S K,et al. AnDHN,a dehydrin protein from Ammopiptanthus nanus,mitigates the negative effects of drought stress in plants[J].Frontiers in Plant Science,2021,12:788938. |
14 | ZHANG C L, CHEN J H, HUANG W X,et al.Transcriptomics and metabolomics reveal purine and phenylpropanoid metabolism response to drought stress in Dendrobium sinense,an endemic orchid species in Hainan island[J].Frontiers in Genetics,2021,12:692702. |
15 | PURAYIL F Y, RAJASHEKAR B, KURUP S S,et al.Transcriptome profiling of Haloxylon persicum (Bunge ex Boiss and Buhse) an endangered plant species under PEG-induced drought stress[J].Genes,2020,11(6):640. |
16 | ZHAO D K, SHI Y N, SENTHILKUMAR H A,et al.Enriched networks ‘nucleoside/nucleotide and ribonucleoside/ribonucleotide metabolic processes’ and ‘response to stimulus’ potentially conferred to drought adaptation of the epiphytic orchid Dendrobium wangliangii [J].Physiology and Molecular Biology of Plants,2019,25(1):31-45. |
17 | DHIMAN N, SHARMA N K, THAPA P,et al.De novo transcriptome provides insights into the growth behaviour and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea:an endangered alpine terrestrial orchid of western Himalaya[J].Scientific Reports,2019,9:13133. |
18 | ZHANG J H, ZHU Y J, PAN Y,et al.Transcriptomic profiling and identification of candidate genes in two Phoebe bournei ecotypes with contrasting cold stress responses[J].Trees,2018,32(5):1315-1333. |
19 | MENG D L, YU X H, MA L Y,et al.Transcriptomic response of Chinese yew (Taxus chinensis) to cold stress[J].Frontiers in Plant Science,2017,8:468. |
20 | POURSALAVATI A, RASHIDI-MONFARED S, EBRAHIMI A.Toward understanding of the methoxylated flavonoid biosynthesis pathway in Dracocephalum kotschyi Boiss[J].Scientific Reports,2021,11(1):19549. |
21 | VASHISHT I,PAL T, SOOD H,et al.Comparative transcriptome analysis in different tissues of a medicinal herb,Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis[J].Molecular Biology Reports,2016,43(12):1395-1409. |
22 | DANG Z H, ZHENG L L, WANG J,et al.Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna [J].BMC Genomics,2013,14:29. |
23 | BISWAL B, JENA B, GIRI A K,et al. De novo transcriptome and tissue specific expression analysis of genes associated with biosynthesis of secondary metabolites in Operculina turpethum (L.)[J].Scientific Reports,2021,11(1):22539. |
24 | WANG Z J, JIANG W M, LIU Y Y,et al.Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between protocorm-like bodies and leaves[J].BMC Genomics,2021,22(1):579. |
25 | SIAH C H, NAMASIVAYAM P, MOHAMED R.Transcriptome reveals senescing callus tissue of Aquilaria malaccensis,an endangered tropical tree,triggers similar response as wounding with respect to terpenoid biosynthesis[J].Tree Genetics & Genomes,2016,12(2):33. |
26 | QIAO F, CONG H Q, JIANG X F,et al. De novo characterization of a Cephalotaxus hainanensis transcriptome and genes related to paclitaxel biosynthesis[J].PLoS One,2014,9(9):e106900. |
27 | XIANG L, LI Y, ZHU Y J,et al.Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis[J].Genomics,2014,103(1):154-159. |
28 | KALRA S, PUNIYA B L, KULSHRESHTHA D,et al. De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant,Chlorophytum borivilianum [J].PLoS One,2013,8(12):e83336. |
29 | LIU S S, CHEN J, LI S C,et al.Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl.(Orchidaceae)[J].International Journal of Molecular Sciences,2015,16(12):30190-30203. |
30 | LI M, DONG X J, PENG J Q,et al. De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree(Davidia involucrata Baill.)[J].BMC Plant Biology,2016,16:82. |
31 | LIU X T, LIU T F, ZHANG C,et al.Transcriptome profile analysis reveals the regulation mechanism of stamen abortion in Handeliodendron bodinieri [J].Forests,2021,12(8):1071. |
32 | TAO L, ZHAO Y, WU Y,et al.Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim[J].Gene,2016,578(1):17-24. |
33 | ZHANG S S, LI Y H, LI Y R,et al.Insights on seed abortion (endosperm and embryo development failure) from the transcriptome analysis of the wild type plant species Paeonia lutea [J].Bioinformation,2020,16(8):638-651. |
34 | LI X L, FAN J Z, LUO S M,et al.Comparative transcriptome analysis identified important genes and regulatory pathways for flower color variation in Paphiopedilum hirsutissimum [J].BMC Plant Biology,2021,21(1):495. |
35 | 蒋景龙,孙旺,李丽,等.濒危植物秦岭石蝴蝶花瓣数量变异机理研究[J].西北植物学报,2021,41(10):1652-1661. |
JIANG J L, SUN W, LI L,et al.Study on the variation mechanism of petals number of endangered plant Petrocosmea qinlingensis [J].Acta Botanica Boreali-Occidentalia Sinica,2021,41(10):1652-1661. | |
36 | 李美琼,高浦新,朱友林,等.微卫星(SSR)分子标记应用于濒危植物保护的研究进展[J].南方林业科学,2011(2):24-28. |
LI M Q, GAO P X, ZHU Y L,et al.Research advances in microsatellite (SSR) marker applied in conservation of endangered plants[J].South China Forestry Science,2011(2):24-28. | |
37 | XU M, LIU X, WANG J W,et al.Transcriptome sequencing and development of novel genic SSR markers for Dendrobium officinale [J].Molecular Breeding,2017,37(2):18. |
38 | LIU H J, TAN W Z, SUN H B,et al.Development and characterization of EST‐SSR markers for Artocarpus hypargyreus (Moraceae)[J].Applications in Plant Sciences,2016,4(12):1600113. |
39 | LI C Y, CHIANG T Y, CHIANG Y C,et al.Cross-species,amplifiable EST-SSR markers for Amentotaxus species obtained by next-generation sequencing[J].Molecules,2016,21(1):67. |
40 | HU W M.Development of 31 EST-SNP markers in Glycyrrhiza uralensis Fisch (Leguminosae) based on transcriptomics[J].Conservation Genetics Resources,2020,12(2):219-223. |
41 | VU D D, SHAH S N M, PHAM M P,et al. De novo assembly and transcriptome characterization of an endemic species of Vietnam,Panax vietnamensis Ha et Grushv.,including the development of EST-SSR markers for population genetics[J].BMC Plant Biology,2020,20(1):358. |
42 | XU M, LI Z T, WANG J W,et al.RNA sequencing and SSR marker development for genetic diversity research in Woonyoungia septentrionalis (Magnoliaceae)[J].Conservation Genetics Resources,2018,10(4):867-872. |
43 | XU D L, CHEN H B,ACI M,et al. De novo assembly,characterization and development of EST-SSRs from Bletilla striata transcriptomes profiled throughout the whole growing period[J].PLoS One,2018,13(10):e0205954. |
44 | ZHOU T, LI Z H, BAI G Q,et al.Transcriptome sequencing and development of genic SSR markers of an endangered Chinese endemic genus Dipteronia oliver (Aceraceae)[J].Molecules,2016,21(3):166. |
45 | JIN Y Q, BI Q X, GUAN W B,et al.Development of 23 novel polymorphic EST‐SSR markers for the endangered relict conifer Metasequoia glyptostroboides [J].Applications in Plant Sciences,2015,3(9):1500038. |
46 | XIANG X Y, ZHANG Z X, WANG Z G,et al.Transcriptome sequencing and development of EST-SSR markers in Pinus dabeshanensis,an endangered conifer endemic to China[J].Molecular Breeding,2015,35(8):158. |
47 | 杨洁.特有濒危植物青檀微卫星(EST-SSR)分子标记开发及其小尺度空间遗传结构研究[D].南京:南京大学,2016. |
YANG J.Development of polymorphic microsatellite loci and study on fine-scale spatial genetic structure of Pteroceltis tatarinowii,an endangered plant endemic to China[D].Nanjing:Nanjing University,2016. | |
48 | 黄蕾.珍稀濒危植物四合木Genic-SSR标记的开发及种群遗传学研究[D].呼和浩特:内蒙古大学,2021. |
HUANG L.Genic-SSR markers development and population genetic study of the rare and endangered plant Tetraena mongolica [D].Hohhot:Inner Mongolia University,2021. | |
49 | ZHOU X J, WANG Y Y, XU Y N,et al. De novo characterization of flower bud transcriptomes and the development of EST-SSR markers for the endangered tree Tapiscia sinensis [J].International Journal of Molecular Sciences,2015,16(6):12855-12870. |
50 | HUANG D N, ZHANG Y Q, JIN M D,et al.Characterization and high cross‐species transferability of microsatellite markers from the floral transcriptome of Aspidistra saxicola (Asparagaceae)[J].Molecular Ecology Resources,2014,14(3):569-577. |
51 | GUO J D, HUANG Z, SUN J L,et al.Research progress and future development trends in medicinal plant transcriptomics[J].Frontiers in Plant Science,2021,12:691838. |
52 | WANG B, REGULSKI M, TSENG E,et al.A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing[J].Genome Research,2018,28(6):921-932. |
53 | LI Y P, DAI C, HU C G,et al.Global identification of alternative splicing via comparative analysis of SMRT‐and Illumina‐based RNA‐seq in strawberry[J].The Plant Journal,2017,90(1):164-176. |
54 | HOANG N V, FURTADO A, MASON P J,et al.A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing[J].BMC Genomics,2017,18(1):395. |
55 | LI J, HARATA-LEE Y, DENTON M D,et al.Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis[J].Cell Discovery,2017,3:17031. |
56 | 钟雅婷,林艳梅,陈定甲,等.多组学数据整合分析和应用研究综述[J].计算机工程与应用,2021,57(23):1-17. |
ZHONG Y T, LIN Y M, CHEN D J,et al.Review on integration analysis and application of multi-omics data[J].Computer Engineering and Applications,2021,57(23):1-17. | |
57 | LIU Y H, LU S, LIU K F,et al.Proteomics:a powerful tool to study plant responses to biotic stress[J].Plant Methods,2019,15:135. |
58 | TRINDADE B M C, REIS R S, VALE E M,et al.Proteomics analysis of the germinating seeds of Cariniana legalis (Mart.) Kuntze (Meliaceae):an endangered species of the Brazilian Atlantic rainforest[J].Brazilian Journal of Botany,2018,41(1):117-128. |
59 | PARKASH J, KASHYAP S, KALITA P J,et al.Differential proteomics of Picrorhiza kurrooa Royle ex Benth.in response to dark stress[J].Molecular Biology Reports,2014,41(9):6051-6062. |
60 | ZHOU X F, CHEN S L, WU H,et al.Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall[J].Biology Direct,2017,12(1):10. |
61 | XIAO Q, MU X L, LIU J S,et al.Plant metabolomics:a new strategy and tool for quality evaluation of Chinese medicinal materials[J].Chinese Medicine,2022,17(1):45. |
62 | YU C N, LUO X J, ZHAN X R,et al.Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T.fuana and T.yunnanensis) in the Himalayas[J].BMC Plant Biology,2018,18(1):197. |
63 | ZHENG Y, SUN X, MIAO Y J,et al.A systematic study on the chemical diversity and efficacy of the inflorescence and succulent stem of Cynomorium songaricum [J].Food & Function,2021,12(16):7501-7513. |
64 | VERMA R K, IBRAHIM M, FURSULE A,et al.Effect of aging and geographical variations in the content of guggulsterones and metabolomic profiling of oleogum resins of Commiphora wightii:the indian bdellium[J].Pharmacognosy Magazine,2021,17(76):774-779. |
65 | AMARAL J, RIBEYRE Z, VIGNEAUD J,et al.Advances and promises of epigenetics for forest trees[J].Forests,2020,11(9):976. |
66 | RYU K H, HUANG L, KANG H M,et al.Single-cell RNA sequencing resolves molecular relationships among individual plant cells[J].Plant Physiology,2019,179(4):1444-1456. |
67 | SHULSE C N, COLE B J, CIOBANU D,et al.High-throughput single-cell transcriptome profiling of plant cell types[J].Cell Reports,2019,27(7):2241-2247.e4. |
68 | LI L B, HUANG G Y, XIANG W B,et al.Integrated transcriptomic and proteomic analyses uncover the regulatory mechanisms of Myricaria laxiflora under flooding stress[J].Frontiers in Plant Science,2022,13:924490. |
69 | KAN L, LIAO Q C, CHEN Z P,et al.Dynamic transcriptomic and metabolomic analyses of Madhuca pasquieri (Dubard) H.J.Lam during the post-germination stages[J].Frontiers in Plant Science,2021,12:731203. |
[1] | 黄志慧, 张一宁, 李娜娜, 郑宝江, 张玉红. 增补UV-B辐射对菥蓂生理特性及次生代谢产物的影响[J]. 植物研究, 2022, 42(6): 1079-1087. |
[2] | 张玉琦, 苏欣, 尤志强, 富金博, 詹亚光, 尹静. 不同激素处理对白桦幼树萌条及三萜合成的影响[J]. 植物研究, 2022, 42(2): 289-298. |
[3] | 肖志鹏, 殷崇敏, 郭连金, 吴原榕, 胡金平, 刘艳艳, 钟友春, 薛苹苹. 光质对香果树种子萌发及幼苗生长影响的研究[J]. 植物研究, 2020, 40(2): 189-195. |
[4] | 马月花, 郭晓瑞, 杨楠, 张野, 唐中华, 王洪政. 黄芪幼苗对镉胁迫的生理响应机制[J]. 植物研究, 2019, 39(4): 497-504. |
[5] | 徐明远, 王谦博, 郭盛磊, 王莹威, 李凤霞, 刘佳, 唐中华, 王振月. 培育年限对刺五加主要药用活性成分的影响[J]. 植物研究, 2019, 39(2): 303-309. |
[6] | 范艳敏, 党士坤, 王文杰, 王慧梅. 碳源、生长素及诱导子对木豆不定根生长和次生代谢产物合成的影响[J]. 植物研究, 2018, 38(3): 391-398. |
[7] | 朱孟炎, 于博帆, 陈华峰. 外源硝态氮水平对长春花生理代谢的影响[J]. 植物研究, 2016, 36(4): 535-541. |
[8] | 曲丹;王慧梅*;任洁. 碳源对迷迭香悬浮培养细胞的生长、迷迭香酸积累及抗氧化酶活性的影响[J]. 植物研究, 2015, 35(4): 623-627. |
[9] | 李敏;曲丹;于海娣;王慧梅*. 木豆毛状根生长特性及相关生理生化指标研究[J]. 植物研究, 2014, 34(3): 339-342. |
[10] | 王洪政;郭晓瑞;唐中华;于景华;祖元刚;张学科;*. 太空诱变对迷迭香(Rosmarinus officinalis L.)形态参数、光合能力和次生代谢产物含量和成分的影响[J]. 植物研究, 2013, 33(3): 287-293. |
[11] | 孙守慧;李威;吕长利;高国平;祁金玉;许哲. 杨树韧皮部次生代谢产物的提取与分析[J]. 植物研究, 2009, 29(1): 120-123. |
[12] | 杨蓓芬;金则新*;邵 红;李钧敏. 七子花不同器官次生代谢产物含量的分析[J]. 植物研究, 2007, 27(2): 229-232. |
[13] | 邵 红;李钧敏;金则新. 不同产地大血藤次生代谢产物含量比较[J]. 植物研究, 2006, 26(3): 342-348. |
[14] | 孙启时. 东北珍稀濒危保护植物的地理分布及其区系特征[J]. 植物研究, 1995, 15(4): 485-490. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||