植物研究 ›› 2023, Vol. 43 ›› Issue (3): 321-332.doi: 10.7525/j.issn.1673-5102.2023.03.001
• 研究综述 • 下一篇
收稿日期:
2023-02-10
出版日期:
2023-05-20
发布日期:
2023-05-11
通讯作者:
郭红卫
E-mail:guohw@sustech.edu.cn
作者简介:
裘喻平(1994—),男,博士后,主要从事植物根毛发育相关研究。
基金资助:
Yuping QIU1,2, Yichuan WANG1,2, Hongwei GUO1,2()
Received:
2023-02-10
Online:
2023-05-20
Published:
2023-05-11
Contact:
Hongwei GUO
E-mail:guohw@sustech.edu.cn
About author:
QIU Yuping(1994—),male,post doctorate,research interest is plant root hair development.
Supported by:
摘要:
根毛是植物根表皮细胞的管状延伸结构,在植物固着土壤、吸收水分和无机盐,以及协助植物根部和外界进行信息交流等过程中起到十分重要的作用。植物根毛的发育过程具有很强的可塑性,多种植物激素和环境因素都可以影响植物根毛的发育过程。得益于根毛结构和功能的特点,其也常被作为研究植物细胞顶端生长和命运分化的模式对象。因而,根毛的发育调控机制一直是植物学研究领域的热点。该文梳理了近20年来植物根毛发育调控领域的研究进展。
中图分类号:
裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332.
Yuping QIU, Yichuan WANG, Hongwei GUO. Research Progress on the Regulatory Mechanism of Plant Root Hair Development[J]. Bulletin of Botanical Research, 2023, 43(3): 321-332.
1 | GRIERSON C, NIELSEN E, KETELAARC T,et al. Root hairs[J].Arabidopsis Book,2014,12:e0172. |
2 | LEAVITT R G.Trichomes of the root in vascular cryptogams and angiosperms[J].Proceedings of the Boston Society of Natural History,1904,31:273-313. |
3 | MENAND B, YI K K, JOUANNIC S,et al.An ancient mechanism controls the development of cells with a rooting function in land plants[J].Science,2007,316(5830):1477-1480. |
4 | SALAZAR-HENAO J E, VÉLEZ-BERMÚDEZ I C, SCHMIDT W.The regulation and plasticity of root hair patterning and morphogenesis[J].Development,2016,143(11):1848-1858. |
5 | KOHLI P S, MAURYA K, THAKUR J K,et al.Significance of root hairs in developing stress-resilient plants for sustainable crop production[J].Plant,Cell And Environment,2022,45(3):677-694. |
6 | MASUCCI J D, RERIE W G, FOREMAN D R,et al.The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana [J].Development,1996,122(4):1253-1260. |
7 | WADA T, TACHIBANA T, SHIMURA Y,et al.Epidermal cell differentiation in Arabidopsis determined by a Myb homolog,CPC[J].Science,1997,277(5329):1113-1116. |
8 | WU S, KOIZUMI K, MACRAE-CRERAR A,et al.Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root[J].PLoS One,2011,6(11):e27536. |
9 | SONG S K, RYU K H, KANG Y H,et al.Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE[J].Plant Physiology,2011,157(3):1196-1208. |
10 | KURATA T, ISHIDA T, KAWABATA-AWAI C,et al.Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation[J].Development,2005,132(24):5387-5398. |
11 | BERNHARDT C, ZHAO M Z, GONZALEZ A,et al.The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis[J].Development,2005,132(2):291-298. |
12 | KWAK S H, SHEN R L, SCHIEFELBEIN J.Positional signaling mediated by a receptor-like kinase in Arabidopsis [J].Science,2005,307(5712):1111-1113. |
13 | SONG J H, KWAK S H, NAM K H,et al.QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis [J].Nature Communications,2019,10(1):1744. |
14 | WANG W J, RYU K H, BRUEX A,et al.Molecular basis for a cell fate switch in response to impaired ribosome biogenesis in the Arabidopsis root epidermis[J].The Plant Cell,2020,32(7):2402-2423. |
15 | ZHU Y, RONG L, LUO Q,et al.The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development[J].The Plant Cell,2017,29(2):260-276. |
16 | LIN Q, OHASHI Y, KATO M,et al.GLABRA2 directly suppresses basic Helix-Loop-Helix transcription factor genes with diverse functions in root hair development[J].The Plant Cell,2015,27(10):2894-2906. |
17 | CHEN S Y, WANG S C.GLABRA2,a common regulator for epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis [J].International Journal of Molecular Sciences,2019,20(20):4997. |
18 | HAN G L, WEI X C, DONG X X,et al. Arabidopsis ZINC FINGER PROTEIN1 acts downstream of GL2 to repress root hair initiation and elongation by directly suppressing bHLH genes[J].The Plant Cell,2020,32(1):206-225. |
19 | PIRES N D, YI K K, BREUNINGER H,et al.Recruitment and remodeling of an ancient gene regulatory network during land plant evolution[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(23):9571-9576. |
20 | DOLAN L.Root hair development in grasses and cereals (Poaceae)[J].Current Opinion in Genetics and Development,2017,45:76-81. |
21 | TOMINAGA-WADA R, NUKUMIZU Y, SATO S,et al.Control of plant trichome and root-hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor[J].PLoS One,2013,8(1):e54019. |
22 | BIBIKOVA T N, BLANCAFLOR E B, GILROY S.Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana [J].The Plant Journal,1999,17(6):657-665. |
23 | MARZOL E, BORASSI C, DENITA JUÁREZ S P,et al.RSL4 takes control:multiple signals,one transcription factor[J].Trends in Plant Science,2017,22(7):553-555. |
24 | YI K K, MENAND B, BELL E,et al.A basic helix-loop-helix transcription factor controls cell growth and size in root hairs[J].Nature Genetics,2010,42(3):264-267. |
25 | HERBURGER K, SCHOENAERS S, VISSENBERG K,et al.Shank-localized cell wall growth contributes to Arabidopsis root hair elongation[J].Nature Plants,2022,8:1222-1232. |
26 | TANIMOTO M M, ROBERTS K, DOLAN L.Ethylene is a positive regulator of root hair development in Arabidopsis thaliana [J].The Plant Journal,1995,8(6):943-948. |
27 | FENG Y, XU P, LI B S,et al.Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(52):13834-13839. |
28 | XIAO F, GONG Q Y, ZHAO S S,et al.MYB30 and ETHYLENE INSENSITIVE3 antagonistically modulate root hair growth in Arabidopsis [J].The Plant Journal,2021,106(2):480-492. |
29 | AN L J, ZHOU Z J, SUN L L,et al.A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis [J].The Plant Journal,2012,72(3):474-490. |
30 | MASUCCI J D, SCHIEFELBEIN J W.Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root[J].The Plant Cell,1996,8(9):1505-1517. |
31 | QIU Y P, TAO R, FENG Y,et al.EIN3 and RSL4 interfere with an MYB-bHLH-WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(51):e2110004118. |
32 | MASUCCI J D, SCHIEFELBEIN J W.The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process[J].Plant Physiology,1994,106(4):1335-1346. |
33 | MANGANO S, DENITA-JUAREZ S P, CHOI H S,et al.Molecular link between auxin and ROS-mediated polar growth[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(20):5289-5294. |
34 | SCHOENAERS S, BALCEROWICZ D, BREEN G,et al.The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth[J].Current Biology,2018,28(5):722-732.e6. |
35 | WAADT R, SELLER C A, HSU P K,et al.Plant hormone regulation of abiotic stress responses[J].Nature Reviews Molecular Cell Biology,2022,23(10):680-694. |
36 | MUDAY G K, RAHMAN A, BINDER B M.Auxin and ethylene:collaborators or competitors?[J].Trends in Plant Science,2012,17(4):181-195. |
37 | RUAN J J, ZHOU Y X, ZHOU M L,et al.Jasmonic acid signaling pathway in plants[J].International Journal of Molecular Sciences,2019,20(10):2479. |
38 | ZHU C H, GAN L J, SHEN Z G,et al.Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis [J].Journal of Experimental Botany,2006,57(6):1299-1308. |
39 | HAN X, ZHANG M H, YANG M L,et al. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate Jasmonate-stimulated root hair development[J].The Plant Cell,2020,32(4):1049-1062. |
40 | ZHU Z Q, AN F Y, FENG Y,et al.Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(30):12539-12544. |
41 | WERNER T, SCHMÜLLING T.Cytokinin action in plant development[J].Current Opinion in Plant Biology,2009,12(5):527-538. |
42 | ZHANG S, HUANG L L, YAN A,et al.Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis [J].Journal of Experimental Botany,2016,67(22):6363-6372. |
43 | WEI Z Y, LI J.Brassinosteroids regulate root growth,development,and symbiosis[J].Molecular Plant,2016,9(1):86-100. |
44 | CHENG Y W, ZHU W J, CHEN Y X,et al.Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases[J].Elife,2014,3:e02525. |
45 | KUPPUSAMY K T, CHEN A Y, NEMHAUSER J L.Steroids are required for epidermal cell fate establishment in Arabidopsis roots[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(19):8073-8076. |
46 | SCHNALL J A, QUATRANO R S.Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana [J].Plant Physiology,1992,100(1):216-218. |
47 | RYMEN B, KAWAMURA A, SCHÄFER S,et al.ABA suppresses root hair growth via the OBP4 transcriptional regulator[J].Plant Physiology,2017,173(3):1750-1762. |
48 | LOMBARDO M C, LAMATTINA L.Abscisic acid and nitric oxide modulate cytoskeleton organization,root hair growth and ectopic hair formation in Arabidopsis [J].Nitric Oxide,2018,80:89-97. |
49 | BAI L, ZHOU Y, ZHANG X R,et al.Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis [J].Chinese Science Bulletin,2007,52(8):1142-1145. |
50 | CHIOU T J, LIN S I.Signaling network in sensing phosphate availability in plants[J].Annual Review of Plant Biology,2011,62:185-206. |
51 | GIRI J, BHOSALE R, HUANG G Q,et al.Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate[J].Nature Communications,2018,9(1):1408. |
52 | DINDAS J, SCHERZER S, ROELFSEMA M R G,et al.AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling[J].Nature Communications,2018,9(1):1174. |
53 | BHOSALE R, GIRI J, PANDEY B K,et al.A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate[J].Nature Communications,2018,9(1):1409. |
54 | MANGANO S, DENITA-JUAREZ S P, MARZOL E,et al.High auxin and high phosphate impact on RSL2 expression and ROS-Homeostasis linked to root hair growth in Arabidopsis thaliana [J].Frontiers in Plant Science,2018,9:1164. |
55 | SONG L, YU H P, DONG J S,et al.The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation[J].PLoS Genetics,2016,12(7):e1006194. |
56 | KIRIK V, SIMON M, HUELSKAMP M,et al.The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis [J].Developmental Biology,2004,268(2):506-513. |
57 | WENDRICH J R, YANG B J, VANDAMME N,et al.Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions[J].Science,2020,370(6518):eaay4970. |
58 | IVANOV R, BRUMBAROVA T, BAUER P.Fitting into the harsh reality:regulation of iron-deficiency responses in dicotyledonous plants[J].Molecular Plant,2012,5(1):27-42. |
59 | MÜLLER M, SCHMIDT W.Environmentally induced plasticity of root hair development in Arabidopsis [J].Plant Physiology,2004,134(1):409-419. |
60 | THIMM O, ESSIGMANN B, KLOSKA S,et al.Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis[J].Plant Physiology,2001,127(3):1030-1043. |
61 | LAN P, LI W F, WEN T N,et al.iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis[J].Plant Physiology,2011,155(2):821-834. |
62 | FORDE B G.Local and long-range signaling pathways regulating plant responses to nitrate[J].Annual Review of Plant Biology,2002,53:203-224. |
63 | LIU K H, LIU M H, LIN Z W,et al.NIN-like protein 7 transcription factor is a plant nitrate sensor[J].Science,2022,377(6613):1419-1425. |
64 | SHIN R, BERG R H, SCHACHTMAN D P.Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen,phosphorus and potassium deficiency[J].Plant & Cell Physiology,2005,46(8):1350-1357. |
65 | CANALES J, CONTRERAS-LÓPEZ O, ÁLVAREZ J M,et al.Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana [J].The Plant Journal,2017,92(2):305-316. |
66 | TIAN Q Y, SUN P, ZHANG W H.Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana [J].New Phytologist,2009,184(4):918-931. |
67 | VISSENBERG K, CLAEIJS N, BALCEROWICZ D,et al.Hormonal regulation of root hair growth and responses to the environment in Arabidopsis [J].Journal of Experimental Botany,2020,71(8):2412-2427. |
68 | TAKAHASHI F, KUROMORI T, URANO K,et al.Drought stress responses and resistance in plants:from cellular responses to long-distance intercellular communication[J].Frontiers in Plant Science,2020,11:556972. |
69 | ZHANG X M, MI Y, MAO H D,et al.Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize[J].Plant Biotechnology Journal,2020,18(5):1271-1283. |
70 | CHENG S F, ZHOU D X, ZHAO Y.WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development[J].Plant Signaling & Behavior,2016,11(2):e1130198. |
71 | WANG Y N, ZHANG W S, LI K X,et al.Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana [J].Journal of Plant Research,2008,121(1):87-96. |
72 | ROBIN A H K, MATTHEW C, UDDIN M J,et al.Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat[J].Journal of Experimental Botany,2016,67(12):3719-3729. |
73 | KARLOVA R, BOER D, HAYES S,et al.Root plasticity under abiotic stress[J].Plant Physiology,2021,187(3):1057-1070. |
74 | PACHECO J M, RANOCHA P, KASULIN L,et al.Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature[J].Nature Communications,2022,13(1):1310. |
75 | MOISON M, PACHECO J M, LUCERO L,et al.The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold[J].Molecular Plant,2021,14(6):937-948. |
76 | KIM D, YANG J Y, GU F W,et al.A temperature-sensitive FERONIA mutant allele that alters root hair growth[J].Plant Physiology,2021,185(2):405-423. |
77 | ESSELING J J, LHUISSIER F G P, EMONS A M C.Nod factor-induced root hair curling:continuous polar growth towards the point of nod factor application[J].Plant Physiology,2003,132(4):1982-1988. |
78 | RIBAUDO C M, KRUMPHOLZ E M, CASSÁN F D,et al. Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene[J].Journal of Plant Growth Regulation,2006,25(2):175-185. |
79 | DOWNIE J A.The roles of extracellular proteins,polysaccharides and signals in the interactions of rhizobia with legume roots[J].Fems Microbiology Reviews,2010,34(2):150-170. |
80 | MURRAY J D.Invasion by invitation:rhizobial infection in legumes[J].Molecular Plant-Microbe Interactions,2011,24(6):631-639. |
81 | ORTÍZ-CASTRO R, MARTÍNEZ-TRUJILLO M, LÓPEZ-BUCIO J.N-acyl-L-homoserine lactones:a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana [J].Plant,Cell And Environment,2008,31(10):1497-1509. |
82 | HWANG Y, CHOI H S, CHO H M,et al.Tracheophytes contain conserved orthologs of a Basic Helix-Loop-Helix transcription factor that modulate root hair specific genes[J].The Plant Cell,2017,29(1):39-53. |
83 | YU C L, SUN C D, SHEN C J,et al.The auxin transporter,OsAUX1,is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.)[J].The Plant Journal,2015,83(5):818-830. |
[1] | 江转转, 龚莉, 宋亚玲. 拟南芥叶绿体分裂蛋白PARC6影响子叶与真叶的生长[J]. 植物研究, 2023, 43(5): 700-710. |
[2] | 郑晟, 高海霞, 苏敏, 卢尚欢, 张腾国, 武国凡. 外源蔗糖影响AtKEA1和AtKEA2调节拟南芥幼苗根的生长[J]. 植物研究, 2023, 43(4): 562-571. |
[3] | 蔡圆圆, 夏季奔奔, 应文涵, 王洁瑶, 谢涛, 邢孔丫, 冯宣军, 华学军. 拟南芥线粒体蛋白突变体ssr1-2表型的详细鉴定与分析[J]. 植物研究, 2023, 43(3): 421-431. |
[4] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[5] | 王梦姣, 曹钰雪, 徐永盛, 丁风鹅, 苏乔. 过表达海洋微生物宏基因组MbCSP提高转基因拟南芥的抗旱和耐寒性[J]. 植物研究, 2022, 42(2): 243-251. |
[6] | 武国凡, 成宏斌, 吴玉俊, 沈娟, 吴旺泽. CRISPR/Cas9介导靶向敲除拟南芥BRI1突变体的鉴定[J]. 植物研究, 2021, 41(3): 362-371. |
[7] | 张雨晴, 刘野, 曲春浦, 刘关君, 杨天天, 杨成君. 转基因PnDof30拟南芥非生物胁迫下的抗性分析[J]. 植物研究, 2020, 40(3): 407-415. |
[8] | 李子义, 贺子航, 卢惠君, 王玉成, 及晓宇. 拟南芥AtUNE12基因的耐盐功能初探[J]. 植物研究, 2020, 40(2): 257-265. |
[9] | 何好, 朱国庆, 陈诗雅, 徐畅, 金淑梅. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析[J]. 植物研究, 2020, 40(2): 274-283. |
[10] | 王爽, 程玉祥, 夏德安. 拟南芥根毛功能基因AtGDPD-Like3关键氨基酸位点鉴定[J]. 植物研究, 2020, 40(1): 79-84. |
[11] | 李芃, 郇兆蔚, 丁兰. Rabdosinate调节生长素极性运输蛋白PIN1、PIN3和PIN4抑制拟南芥幼苗根生长[J]. 植物研究, 2019, 39(6): 908-916. |
[12] | 李爽, 熊樱, RALF M;ller-Xing, 邢倩. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究, 2019, 39(5): 752-759. |
[13] | 樊二勤, 刘彩霞, 付鹏跃, 杨传平, 曲冠证. 84K杨PagC3H3基因表达模式分析[J]. 植物研究, 2019, 39(4): 521-528. |
[14] | 赵敏, 王玥萱, 徐运飞, 赵启安, 刘博, 杨宁. 干旱胁迫下拟南芥中H2S与ABA信号关系研究[J]. 植物研究, 2019, 39(1): 104-112. |
[15] | 赵敏, 杨宁, 陈璐, 安炎黄, 李文领, 赵峰峰. 拟南芥中H2S与PLDα1响应干旱胁迫的作用研究[J]. 植物研究, 2018, 38(3): 406-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||