植物研究 ›› 2025, Vol. 45 ›› Issue (2): 171-180.doi: 10.7525/j.issn.1673-5102.2025.02.003
• 综述文章 • 上一篇
童宝洁1,2,3, 淡冬莹1,2,3, 李佳蔚1,2,3()
收稿日期:
2024-06-23
出版日期:
2025-03-20
发布日期:
2025-04-04
通讯作者:
李佳蔚
E-mail:lijiawei1662020@163.com
作者简介:
童宝洁(1998—),男,硕士研究生,主要从事植物生理生态研究。
基金资助:
Baojie TONG1,2,3, Dongying DAN1,2,3, Jiawei LI1,2,3()
Received:
2024-06-23
Online:
2025-03-20
Published:
2025-04-04
Contact:
Jiawei LI
E-mail:lijiawei1662020@163.com
摘要:
全球气候变暖背景下,植物叶片面临日益严重的热胁迫,其生长、发育和生产力受到广泛影响。叶片温度直接影响光合作用、蒸腾作用和呼吸作用等重要植物生理过程。因此,研究植物叶片的高温耐受机理具有重要意义。该文以叶片热耐受性参数的常用确定方法为切入点,包括初始荧光(F0)和最大量子产量(Fv/Fm)等关键参数的测定,以及植物受到热胁迫时,最小叶绿素a荧光急剧上升的温度(Tcrit)和Fv/Fm下降到其最大值50%时的温度(T50)等反映叶片耐热能力的指标的确定。通过分析前人关于不同物种间叶片热耐受性的研究结果,发现热耐受物种具有较高的Tcrit和较低的叶片热敏感性(ΔT),能够在较高温度下保持光系统Ⅱ(PSⅡ)的功能。探讨了叶片形态结构、水分散失、气孔调节等温度调节策略在叶片高温耐受中的作用。通过分析叶片热耐受性参数和温度调节策略,揭示植物叶片在高温环境下的适应机制,为理解植物叶片高温耐受机理提供结构和生理基础层面的参考,并为未来深入研究植物耐热性提供理论支持。
中图分类号:
童宝洁, 淡冬莹, 李佳蔚. 植物叶片高温耐受能力及调节策略研究进展[J]. 植物研究, 2025, 45(2): 171-180.
Baojie TONG, Dongying DAN, Jiawei LI. Research Progress on Heat Tolerance and Regulatory Strategies of Plant Leaves[J]. Bulletin of Botanical Research, 2025, 45(2): 171-180.
1 | MEEHL G A, STOCKER T F, COLLINS W,et al.Global climate projections[M]//Climate change 2007:the physical science basis.Cambridge: Cambridge University Press,2007:747-845. |
2 | CRAMER W, BONDEAU A, SCHAPHOFF S,et al.Tropical forests and the global carbon cycle:impacts of atmospheric carbon dioxide,climate change and rate of deforestation[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2004,359(1443):331-343. |
3 | DE BOECK H J, LEMMENS C M H M, ZAVALLONI C,et al.Biomass production in experimental grasslands of different species richness during three years of climate warming[J].Biogeosciences,2008,5(2):585-594. |
4 | KIPP E.Heat stress effects on growth and development in three ecotypes of varying latitude of Arabidopsis [J].Applied Ecology and Environmental Research,2008,6(4):1-14. |
5 | SLOT M, WINTER K. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes[J].New Phytologist,2017,214(3):1103-1117. |
6 | TUZET A, PERRIER A, LEUNING R.A coupled model of stomatal conductance,photosynthesis and transpiration[J].Plant,Cell & Environment,2003,26 (7):1097-1116. |
7 | MICHALETZ S T, WEISER M D, MCDOWELL N G,et al.The energetic and carbon economic origins of leaf thermoregulation[J].Nature Plants,2016,2(9):16129. |
8 | OFFORD C A.Pushed to the limit:consequences of climate change for the Araucariaceae:a relictual rain forest family[J].Annals of Botany,2011,108(2):347-357. |
9 | 贾思振.夏菊耐热性综合评价及其机理研究[D].南京:南京农业大学,2008. |
JIA S Z.The study on comprehensive evaluation of heat-tolerance and heat-tolerant mechanism in summer Chrysanthemum [D].Nanjing:Nanjing Agricultural University,2008. | |
10 | HICKEY L J.Changes in the angiosperm flora across the cretaceoustertiary boundary[M]//BERGGREN W A,VAN COUVERING J A.Catastrophes and earth history:the new uniformitarianism.Princeton:Princeton University Press,1984:279-314. |
11 | SCHREIBER U, BERRY J A.Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus[J].Planta,1977,136(3):233-238. |
12 | SLOT M, KRAUSE G H, KRAUSE B,et al.Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species[J].Photosynthesis Research,2019,141(1):119-130. |
13 | KNIGHT C A, ACKERLY D D.An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence[J].Oecologia,2002,130(4):505-514. |
14 | KRAUSE G H, WINTER K, KRAUSE B,et al.High-temperature tolerance of a tropical tree,Ficus insipida:methodological reassessment and climate change considerations[J].Functional Plant Biology,2010,37(9):890-900. |
15 | PEREZ T M, FEELEY K J.Photosynthetic heat tolerances and extreme leaf temperatures[J].Functional Ecology,2020,34(11):2236-2245. |
16 | TIWARI R, GLOOR E, CRUZ W L A DA,et al.Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change[J].Plant,Cell & Environment,2021,44(7):2428-2439. |
17 | KUNERT N, HAJEK P, HIETZ P,et al.Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers[J].Plant Biology,2022,24(7):1254-1261. |
18 | MÜNCHINGER I K, HAJEK P, AKDOGAN B,et al.Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits[J].Journal of Forestry Research,2023,34(1):63-76. |
19 | NING Q R, LI Q, ZHANG H P,et al.Weak correlations among leaf thermal metrics,economic traits and damages under natural heatwaves[J].Science of the Total Environment,2024,961:170022. |
20 | 刘慧斌,朱周俊,赵君茹,等.6个高州油茶无性系叶片形态结构及耐热性比较[J].热带作物学报,2023, 44(4):737-745. |
LIU H B, ZHU Z J, ZHAO J R,et al.Comparison of leaf morphological structure and heat tolerance of six Camellia gauchowensis Chang clones[J].Chinese Journal of Tropical Crops,2023,44(4):737-745. | |
21 | 周莹莹,林华.不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J].植物生态学报,2023,47(5):733-744. |
ZHOU Y Y, LIN H.Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients[J].Chinese Journal of Plant Ecology,2023,47(5):733-744. | |
22 | 袁家梁,迟天淇,李秧秧.16种城市园林落叶树种光合耐热性及其与叶形态、解剖结构的关系[J].生态学杂志,2023,42(7):1561-1567. |
YUAN J L, CHI T Q, LI Y Y.Leaf photosynthetic thermotolerance in 16 urban tree species and its relationship with leaf morpho-anatomical structure[J].Chinese Journal of Ecology,2023,42(7):1561-1567. | |
23 | 叶洁泓,于成龙,卓少菲,等.木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J].植物生态学报,2023,47(10):1432-1440. |
YE J H, YU C L, ZHUO S F,et al.Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae[J].Chinese Journal of Plant Ecology,2023,47(10):1432-1440. | |
24 | 李谦盛,邓敏,沈娟,等.濒危树种越南青冈的半致死温度研究[J].西部林业科学,2014,43(5):8-12. |
LI Q S, DENG M, SHEN J,et al.Study on the lethal temperature of the endangered Cyclobalanopsis austrocochinchinensis [J].Journal of West China Forestry Science,2014,43(5):8-12. | |
25 | 郭亚男,李仕裕,木楠,等.4种珍稀濒危植物的半致死温度研究[J].林业与环境科学,2016,32(6):20-24. |
GUO Y N, LI S Y, MU N,et al.Study on the median lethal temperature of 4 rare and endangered plant species[J].Forestry and Environmental Science,2016,32(6):20-24. | |
26 | CURTIS E M, KNIGHT C A, PETROU K,et al.A comparative analysis of photosynthetic recovery from thermal stress:a desert plant case study[J].Oecologia,2014,175(4):1051-1061. |
27 | CURTIS E M, GOLLAN J, MURRAY B R,et al.Native microhabitats better predict tolerance to warming than latitudinal macro-climatic variables in arid-zone plants[J].Journal of Biogeography,2016,43(6):1156-1165. |
28 | DOWNTON W J S, BERRY J A, SEEMANN J R.Tolerance of photosynthesis to high temperature in desert plants[J].Plant Physiology,1984,74(4):786-790. |
29 | ZHANG J L, POORTER L, HAO G Y,et al.Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span[J].Annals of Botany,2012,110(5):1027-1033. |
30 | ZHU L L, BLOOMFIELD K J, HOCART C H,et al.Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes[J].Plant,Cell & Environment,2018,41(6):1251-1262. |
31 | O'SULLIVAN O S, HESKEL M A, REICH P B,et al.Thermal limits of leaf metabolism across biomes[J].Global Change Biology,2017,23(1):209-223. |
32 | O'SULLIVAN O S, WEERASINGHE K W L K, EVANS J R,et al.High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function[J].Plant,Cell & Environment,2013,36(7):1268-1284. |
33 | FEELEY K, MARTINEZ-VILLA J, PEREZ T,et al.The thermal tolerances,distributions,and performances of tropical montane tree species[J].Frontiers in Forests and Global Change,2020,3:25. |
34 | SLOT M, CALA D, ARANDA J,et al.Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits,but not with phylogeny[J].Plant,Cell & Environment,2021,44(7):2414-2427. |
35 | NARDINI A, PEDÀ G, LA ROCCA N.Trade-offs between leaf hydraulic capacity and drought vulnerability:morpho-anatomical bases,carbon costs and ecological consequences[J].New Phytologist,2012,196(3):788-798. |
36 | SASTRY A, BARUA D.Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum[J].Scientific Reports,2017,7:11246. |
37 | WRIGHT I J, REICH P B, CORNELISSEN J H C,et al.Modulation of leaf economic traits and trait relationships by climate[J].Global Ecology and Biogeography,2005,14(5):411-421. |
38 | 张林,罗天翔.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,2004,28(6):844-852. |
ZHANG L, LUO T X.Advances in ecological studies on leaf lifespan and associated leaf traits[J].Chinese Journal of Plant Ecology,2004,28(6):844-852. | |
39 | 宋璐璐,樊江文,吴绍洪.植物叶片性状沿海拔梯度变化研究进展[J].地理科学进展,2011,30(11):1431-1439. |
SONG L L, FAN J W, WU S H.Research advances on changes of leaf traits along an altitude gradient[J].Progress in Geography,2011,30(11):1431-1439. | |
40 | 冯秋红,程瑞梅,史作民,等.巴郎山异型柳叶片功能性状及性状间关系对海拔的响应[J].生态学报,2013,33(9):2712-2718. |
FENG Q H, CHENG R M, SHI Z M,et al.Response of leaf functional traits and the relationships among them to altitude of Salix dissa in Balang Mountain[J].Acta Ecologica Sinica,2013,33(9):2712-2718. | |
41 | ROSE L, RUBARTH M C, HERTEL D,et al.Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows[J].Journal of Vegetation Science,2013,24(2):239-250. |
42 | FADRIQUE B, BARALOTO C, BRAVO-AVILA C H,et al.Bamboo climatic tolerances are decoupled from leaf functional traits across an Andean elevation gradient[J].Oikos,2022,2022(11):e09229. |
43 | SASTRY A, GUHA A, BARUA D.Leaf thermotolerance in dry tropical forest tree species:relationships with leaf traits and effects of drought[J].AoB Plants,2018,10(1):plx070. |
44 | FRECKLETON R P, HARVEY P H, PAGEL M.Phylogenetic analysis and comparative data:a test and review of evidence[J].The American Naturalist,2002,160(6):712-726. |
45 | BUCHNER O, NEUNER G.Variability of heat tolerance in alpine plant species measured at different altitudes[J].Arctic,Antarctic,and Alpine Research,2003,35(4):411-420. |
46 | HAVAUX M.Stress tolerance of photosystem Ⅱ in vivo:antagonistic effects of water,heat,and photoinhibition stresses[J].Plant Physiology,1992,100(1):424-432. |
47 | LADJAL M, EPRON D, DUCREY M.Effects of drought preconditioning on thermotolerance of photosystem Ⅱ and susceptibility of photosynthesis to heat stress in cedar seedlings[J].Tree Physiology,2000,20(18):1235-1241. |
48 | VALLADARES F, PEARCY R W.Interactions between water stress,sun-shade acclimation,heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia [J].Plant,Cell & Environment,1997,20(1):25-36. |
49 | 李永华,李臻,辛智鸣,等.形态变化对叶片表面温度的影响[J].植物生态学报,2018,42(2):202-208. |
LI Y H, LI Z, XIN Z M,et al.Effects of leaf shape plasticity on leaf surface temperature[J].Chinese Journal of Plant Ecology,2018,42(2):202-208. | |
50 | GHOUIL H, MONTPIED P, EPRON D,et al.Thermal optima of photosynthetic functions and thermostability of photochemistry in cork oak seedlings[J].Tree Physiology,2003,23(15):1031-1039. |
51 | COOK A M, BERRY N, MILNER K V,et al.Water availability influences thermal safety margins for leaves[J].Functional Ecology,2021,35(10):2179-2189. |
52 | KNIGHT C A, ACKERLY D D.Evolution and plasticity of photosynthetic thermal tolerance,specific leaf area and leaf size:congeneric species from desert and coastal environments[J].New Phytologist,2003,160(2):337-347. |
53 | GALLAGHER R V, ALLEN S, WRIGHT I J.Safety margins and adaptive capacity of vegetation to climate change[J].Scientific Reports,2019,9:8241. |
54 | LEON-GARCIA I V, LASSO E.High heat tolerance in plants from the Andean highlands:implications for paramos in a warmer world[J].PLoS One,2019,14(11):e0224218. |
55 | KULLBERG A T, COOMBS L, AHUANARI R D S,et al.Leaf thermal safety margins decline at hotter temperatures in a natural warming ‘experiment’ in the Amazon[J].New Phytologist,2024,241(4):1447-1463. |
56 | AHRENS C W, CHALLIS A, BYRNE M,et al.Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins[J].New Phytologist,2021,232(3):1212-1225. |
57 | MORAN M E, APARECIDO L M T, KOEPKE D F,et al.Limits of thermal and hydrological tolerance in a foundation tree species (Populus fremontii) in the desert southwestern United States[J].New Phytologist,2023,240(6):2298-2311. |
58 | BALDOCCHI D, MEYERS T.On using eco-physiological,micrometeorological and biogeochemical theory to evaluate carbon dioxide,water vapor and trace gas fluxes over vegetation:a perspective[J].Agricultural and Forest Meteorology,1998,90(1/2):1-25. |
59 | ALBERTSON J D, KATUL G G, WIBERG P.Relative importance of local and regional controls on coupled water,carbon,and energy fluxes[J].Advances in Water Resources,2001,24(9/10):1103-1118. |
60 | VOGEL S.Leaves in the lowest and highest winds:temperature,force and shape[J].New Phytologist,2009, 183(1):13-26. |
61 | DONG N, PRENTICE I C, HARRISON S P,et al.Biophysical homoeostasis of leaf temperature:a neglected process for vegetation and land-surface modelling[J].Global Ecology and Biogeography,2017,26(9):998-1007. |
62 | LEIGH A, SEVANTO S, BALL M C,et al.Do thick leaves avoid thermal damage in critically low wind speeds?[J].New Phytologist,2012,194(2):477-487. |
63 | SCHYMANSKI S J,OR D, ZWIENIECKI M.Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations[J].PLoS One,2013,8(1):e54231. |
64 | BALL M C, COWAN I R, FARQUHAR G D.Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove forest[J].Australian Journal of Plant Physiology,1988,15(1/2):263-276. |
65 | WRIGHT I J, DONG N, MAIRE V,et al.Global climatic drivers of leaf size[J].Science,2017,357(6354):917-921. |
66 | 王常顺,汪诗平.植物叶片性状对气候变化的响应研究进展[J].植物生态学报,2015,39(2):206-216. |
WANG C S, WANG S P.A review of research on responses of leaf traits to climate change[J].Chinese Journal of Plant Ecology,2015,39(2):206-216. | |
67 | EHLERINGER J R.Comparative ecophysiology of Encelia farinosa and Encelia frutescens [J].Oecologia,1988,76:553-561. |
68 | SCHUSTER A C, BURGHARDT M, ALFARHAN A,et al.Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures[J].AoB Plants,2016,8:plw027. |
69 | CARMO-SILVA E, SCALES J C, MADGWICK P J,et al.Optimizing rubisco and its regulation for greater resource use efficiency[J].Plant,Cell & Environment,2015,38(9):1817-1832. |
70 | ZHOU Y Y, KITUDOM N, FAUSET S,et al.Leaf thermal regulation strategies of canopy species across four vegetation types along a temperature and precipitation gradient[J].Agricultural and Forest Meteorology,2023,343:109766. |
71 | SMITH W K.Temperatures of desert plants:another perspective on the adaptability of leaf size[J].Science,1978,201(4356):614-616. |
72 | LANGE O L.Untersuchungen über wärmehaushalt und hitzeresistenz mauretanischer wüsten-und savannenpflanzen[J].Flora oder Allgemeine Botanische Zeitung,1959,147(4):595-651. |
73 | KELLER M.The science of grapevines:anatomy and physiology[M].London:Academic Press,2015:101-124. |
74 | URBAN J, INGWERS M W, MCGUIRE M A,et al.Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra [J].Journal of Experimental Botany,2017,68(7):1757-1767. |
75 | DUURSMA R A, BLACKMAN C J, LOPÉZ R,et al.On the minimum leaf conductance:its role in models of plant water use,and ecological and environmental controls[J].New Phytologist,2019,221(2):693-705. |
76 | SCHULZE E D, LANGE O L, EVENARI M,et al.The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions[J].Oecologia,1974,17(2):159-170. |
77 | FREDEEN A L, SAGE R F.Temperature and humidity effects on branchlet gas-exchange in white spruce:an explanation for the increase in transpiration with branchlet temperature[J].Trees,1999,14(3):161-168. |
78 | LU Z M, QUIÑONES M A, ZEIGER E.Temperature dependence of guard cell respiration and stomatal conductance co-segregate in an F2 population of Pima cotton[J].Australian Journal of Plant Physiology,2000,27(5):457-462. |
79 | MOTT K A, PEAK D.Stomatal responses to humidity and temperature in darkness[J].Plant,Cell & Environment,2010,33(7):1084-1090. |
80 | TESKEY R O, FITES J A, SAMUELSON L J,et al.Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L.under different environmental conditions[J].Tree Physiology,1986,2(1/2/3):131-142. |
81 | SAGE R F, SHARKEY T D.The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants[J].Plant Physiology,1987,84(3):658-664. |
82 | CERASOLI S, WERTIN T, MCGUIRE M A,et al.Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature[J].AoB Plants,2014,6:plu018. |
83 | VON CAEMMERER S, EVANS J R.Temperature responses of mesophyll conductance differ greatly between species[J].Plant,Cell & Environment,2015,38(4):629-637. |
84 | WESTON D J, BAUERLE W L.Inhibition and acclimation of C3 photosynthesis to moderate heat:a perspective from thermally contrasting genotypes of Acer rubrum (red maple)[J].Tree Physiology,2007,27(8):1083-1092. |
85 | LAHR E C, SCHADE G W, CROSSETT C C,et al.Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas[J].Global Change Biology,2015,21(11):4221-4236. |
86 | WAY D A, OREN R, KIM H S,et al.How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures[J].Journal of Geophysical Research-Biogeosciences,2011,116:G04031. |
87 | SLOT M, GARCIA M N, WINTER K.Temperature response of CO2 exchange in three tropical tree species[J].Functional Plant Biology,2016,43(5):468-478. |
88 | LAWSON T, VON CAEMMERER S, BAROLI I.Photosynthesis and stomatal behaviour[M]//LÜTTGE U,BEYSCHLAG W,BÜDEL B,et al.Progress in botany:Vol.72.Berlin:Springs,2010:265-304. |
89 | HETHERINGTON A M, WOODWARD F I.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908. |
90 | AMEYE M, WERTIN T M, BAUWERAERTS I,et al.The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres[J].New Phytologist,2012,196(2):448-461. |
91 | MCDOWELL N, POCKMAN W T, ALLEN C D,et al.Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J].New Phytologist,2008,178(4):719-739. |
92 | CHAVES M M, ZARROUK O, FRANCISCO R,et al.Grapevine under deficit irrigation:hints from physiological and molecular data[J].Annals of Botany,2010, 105(5):661-676. |
93 | TARDIEU F, SIMONNEAU T.Variability among species of stomatal control under fluctuating soil water status and evaporative demand:modelling isohydric and anisohydric behaviours[J].Journal of Experimental Botany,1998,49:419-432. |
94 | FU X L, MEINZER F C.Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry):a global data set reveals coordination and trade-offs among water transport traits[J].Tree Physiology,2019,39(1):122-134. |
95 | ZHU S D, CHEN Y J, YE Q,et al.Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits[J].Tree Physiology,2018,38(5):658-663. |
96 | FRANKS P J, DRAKE P L, FROEND R H.Anisohydric but isohydrodynamic:seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance[J].Plant,Cell & Environment,2007,30(1):19-30. |
[1] | 刘智媛, 曾丽, 杜习武, 彭勇政, 陶懿伟, 李雨清, 秦俊. 藤本月季“安吉拉”花芽分化形态结构及内源激素变化研究[J]. 植物研究, 2021, 41(1): 37-43. |
[2] | 邹子瑜, 谷利伟, 张大维. 东北地区李属(Prunes L.)植物导管分子形态结构研究[J]. 植物研究, 2021, 41(1): 4-12. |
[3] | 张腾驹, 陈小红, 刘静, 康喜坤. 四川省不同天然种群珙桐叶片解剖结构与其耐热性的关系[J]. 植物研究, 2019, 39(2): 208-221. |
[4] | 毛金枫, 聂江力, 吴姿锐, 杨雪君, 裴毅. 不同土壤环境下黑果枸杞茎、叶形态结构比较[J]. 植物研究, 2017, 37(4): 529-534. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||