欢迎访问《植物研究》杂志官方网站,今天是 2025年4月20日 星期日 分享到:

植物研究 ›› 2025, Vol. 45 ›› Issue (2): 171-180.doi: 10.7525/j.issn.1673-5102.2025.02.003

• 综述文章 • 上一篇    

植物叶片高温耐受能力及调节策略研究进展

童宝洁1,2,3, 淡冬莹1,2,3, 李佳蔚1,2,3()   

  1. 1.广西大学林学院,亚热带农业生物资源保护与利用国家重点实验室,南宁 530004
    2.广西大学林学院,广西森林生态与保育重点实验室,南宁 530004
    3.广西大学林学院,南宁 530004
  • 收稿日期:2024-06-23 出版日期:2025-03-20 发布日期:2025-04-04
  • 通讯作者: 李佳蔚 E-mail:lijiawei1662020@163.com
  • 作者简介:童宝洁(1998—),男,硕士研究生,主要从事植物生理生态研究。
  • 基金资助:
    国家自然科学基金项目(31901092);广西自然科学基金项目(2021GXNSFBA075059)

Research Progress on Heat Tolerance and Regulatory Strategies of Plant Leaves

Baojie TONG1,2,3, Dongying DAN1,2,3, Jiawei LI1,2,3()   

  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,College of Forestry,Guangxi University,Nanning 530004
    2.Guangxi Key Laboratory of Forest Ecology and Conservation,College of Forestry,Guangxi University,Nanning 530004
    3.College of Forestry,Guangxi University,Nanning 530004
  • Received:2024-06-23 Online:2025-03-20 Published:2025-04-04
  • Contact: Jiawei LI E-mail:lijiawei1662020@163.com

摘要:

全球气候变暖背景下,植物叶片面临日益严重的热胁迫,其生长、发育和生产力受到广泛影响。叶片温度直接影响光合作用、蒸腾作用和呼吸作用等重要植物生理过程。因此,研究植物叶片的高温耐受机理具有重要意义。该文以叶片热耐受性参数的常用确定方法为切入点,包括初始荧光(F0)和最大量子产量(Fv/Fm)等关键参数的测定,以及植物受到热胁迫时,最小叶绿素a荧光急剧上升的温度(Tcrit)和Fv/Fm下降到其最大值50%时的温度(T50)等反映叶片耐热能力的指标的确定。通过分析前人关于不同物种间叶片热耐受性的研究结果,发现热耐受物种具有较高的Tcrit和较低的叶片热敏感性(ΔT),能够在较高温度下保持光系统Ⅱ(PSⅡ)的功能。探讨了叶片形态结构、水分散失、气孔调节等温度调节策略在叶片高温耐受中的作用。通过分析叶片热耐受性参数和温度调节策略,揭示植物叶片在高温环境下的适应机制,为理解植物叶片高温耐受机理提供结构和生理基础层面的参考,并为未来深入研究植物耐热性提供理论支持。

关键词: 叶片温度, 形态结构, 气孔调节, 耐热性, 热安全边界

Abstract:

Under the background of global warming, plant leaves are facing increasingly severe heat stress, which widely affects their growth, development, and productivity. Leaf temperature directly affects important physiological processes of plants such as photosynthesis, transpiration, and respiration. Therefore, clarifying high-temperature tolerance mechanism of plant leaves is of great significance. In this paper, the methods for determining leaf heat tolerance parameters were used, including the key parameters such as initial fluorescence (F0) and maximum quantum yield(Fv/Fm), as well as indicators reflecting the leaf's heat tolerance ability, such as the temperature at which the minimum fluorescence of photosystem Ⅱ(PSⅡ) began to rise rapidly(Tcrit) and the temperature at which the maximum quantum yield(Fv/Fm) of photosystem Ⅱ(PSⅡ) decreased to half(T50) were determined respectively. By analyzing the previous results on the heat tolerance of leaves among different species, it was found that heat-tolerant species had higher Tcrit and lower leaf heat sensitivity(ΔT), and could maintain the function of photosystem Ⅱ(PSⅡ) at higher temperatures. In addition, the roles of temperature regulation strategies such as leaf morphological structure, water loss, and stomatal regulation in leaf high-temperature tolerance were discussed respectively. In conclusion, the adaptation mechanism of plant leaves under high-temperature conditions was revealed by analyzing leaf heat tolerance parameters and temperature regulation strategies, and this work provided the structure and physiology basis for understanding the mechanism of plant leaf high-temperature tolerance, and theoretical support for future in-depth research on plant heat tolerance.

Key words: leaf temperature, morphological structure, stomatal regulation, heat tolerance, thermal safety margin

中图分类号: