植物研究 ›› 2024, Vol. 44 ›› Issue (6): 812-821.doi: 10.7525/j.issn.1673-5102.2024.06.002
收稿日期:
2024-05-11
出版日期:
2024-11-20
发布日期:
2024-11-22
通讯作者:
杜美婷
E-mail:58636798@qq.com
作者简介:
陈慧泽(1986—),男,博士研究生,主要从事植物细胞信号转导研究。
基金资助:
Huize CHEN, Liman DIAO, Jiajia ZHOU, Rong HAN, Meiting DU()
Received:
2024-05-11
Online:
2024-11-20
Published:
2024-11-22
Contact:
Meiting DU
E-mail:58636798@qq.com
摘要:
植物生长发育受多种植物激素综合调控。其中,油菜素甾醇(Brassinosteroids, BRs)作为重要的固醇类植物激素,与其他植物激素通过互作网络调控种子萌发、根生长发育、光形态建成及果实成熟等生理过程。该文综述了近年来油菜素内酯(Brassinolide,BR)与其他植物激素共同精细调控植物生长发育及胁迫响应的研究进展,为深入开展BR生物学功能研究提供重要参考。
中图分类号:
陈慧泽, 刁丽曼, 周佳佳, 韩榕, 杜美婷. 油菜素内酯与其他植物激素互作调控植物生长发育及胁迫响应的研究进展[J]. 植物研究, 2024, 44(6): 812-821.
Huize CHEN, Liman DIAO, Jiajia ZHOU, Rong HAN, Meiting DU. Advances on the Crosstalk of Brassinolide with Other Phytohormones in Plant Growth, Development, and Stress Response[J]. Bulletin of Botanical Research, 2024, 44(6): 812-821.
表1
BR与其他激素互作调控植物生长发育及胁迫响应
生长发育类型 Growth and Development pattern | 生理现象 Physiological phenomenon | 互作激素 Phytohormones interaction | 互作网络 Crosstalk | 植物表型 Plant phenotype | 物种 Species | 参考文献 References |
---|---|---|---|---|---|---|
营养生长 | 种子萌发 | 脱落酸、赤霉素 | 与脱落酸拮抗 与赤霉素协同 | 促进种子萌发 | 拟南芥、水稻 | [ |
形态建成 | 赤霉素、生长素、 乙烯、茉莉素 | 与赤霉素协同 与生长素、乙烯协同 与茉莉素协同 | 促进下胚轴伸长 正调控暗形态建成 提高光合能力 | 南瓜、拟南芥、大豆 | [ | |
根发育 | 细胞分裂素、 生长素、乙烯 | 与细胞分裂素拮抗 与生长素协同 与乙烯拮抗 | 抑制根生长 促进根生长 抑制根生长 | 拟南芥 | [ | |
叶片发育 | 脱落酸、生长素 | 与生长素协同 与脱落酸协同 | 控制叶片形状 促进水稻幼苗叶倾角的 展开和气孔关闭 | 水稻、拟南芥 | [ | |
侧枝发育、分蘖 | 生长素、独脚金内酯、 赤霉素、细胞分裂素 | 与生长素、独脚金内酯、赤霉素拮抗 与细胞分裂素协同 与独脚金内酯拮抗 | 促进侧芽活化和侧枝发生 抑制芽活化和侧枝发生 抑制芽分蘖或芽分枝 | 番茄、水稻、拟南芥 | [ | |
芽休眠 | 赤霉素、茉莉素 | 与赤霉素、茉莉素协同 | 促进梨芽休眠解除 | 梨 | [ | |
生殖生长 | 植物开花 | 赤霉素、脱落酸 | 与赤霉素协同 与脱落酸拮抗 | 促进开花 延迟开花 | 拟南芥、小麦、番茄 | [ |
果实成熟 | 乙烯、细胞分裂素、 脱落酸 | 与乙烯协同或拮抗 与细胞分裂素拮抗 与脱落酸协同 | 促进番茄果实成熟或抑制梨、 苹果果实成熟 抑制水稻籽粒发育 增大种子大小 | 番茄、梨、苹果、 水稻、大豆 | [ | |
胁迫响应 | 抗病性 | 水杨酸 | 与水杨酸拮抗 | 降低植物抗病性 | 拟南芥 | [ |
冷胁迫 | 水杨酸、脱落酸 | 与水杨酸协同 与脱落酸协同 | 提高植物低温抗性 | 小麦、番茄、拟南芥 | [ | |
热胁迫 | 乙烯 | 与乙烯协同 | 提高植物热敏感性 | 拟南芥 | [ | |
盐胁迫 | 脱落酸 | 与脱落酸协同 | 提高植物耐盐性 | 小麦 | [ | |
干旱胁迫 | 脱落酸 | 与脱落酸协同 | 提高抗干旱能力 | 大豆 | [ | |
水分胁迫 | 脱落酸 | 与脱落酸协同 | 减轻水分胁迫损伤症状 | 葡萄 | [ |
1 | CASTORINA G, CONSONNI G.The role of brassinosteroids in controlling plant height in Poaceae:a genetic perspective[J].International Journal of Molecular Sciences,2020,21(4):1191. |
2 | 陈晨,陈虹,倪铭,等.油菜素内酯调控植物生长发育的研究进展[J].林业科学,2022,58(7):144-155. |
CHEN C, CHEN H, NI M,et al.Research progress of brassinolide in regulating plant growth and development[J].Scientia Silvae Sinicae,2022,58(7):144-155. | |
3 | TIAN P, LIU J F, YAN B H,et al.BRASSINOSTEROID-SIGNALING KINASE1-1,a positive regulator of brassinosteroid signalling,modulates plant architecture and grain size in rice[J].Journal of Experimental Botany,2023,74(1):283-295. |
4 | BAJGUZ A.Metabolism of brassinosteroids in plants[J].Plant Physiology and Biochemistry,2007,45(2):95-107. |
5 | YANG C J, ZHANG C, LU Y N,et al.The mechanisms of brassinosteroids’ action:from signal transduction to plant development[J].Molecular Plant,2011,4(4):588-600. |
6 | 郭飞梅,吕铭辉,黎家.油菜素甾醇的稳态与信号转导调控研究进展[J].植物生理学报,2023,59(12):2217-2240. |
GUO F M, LÜ M H, LI J.Current progress on the regulation of brassinosteroid homeostasis and signal transduction[J].Plant Physiology Journal,2023,59(12):2217-2240. | |
7 | 李钱峰,鲁军,余佳雯,等.油菜素内酯与脱落酸互作调控植物生长与抗逆的分子机制研究进展[J].植物生理学报,2018,54(3):370-378. |
LI Q F, LU J, YU J W,et al.Advances in molecular mechanisms of brassinosteroid-abscisic acid crosstalk coordinating plant growth and stress tolerances[J].Plant Physiology Journal,2018,54(3):370-378. | |
8 | LI J, WEN J Q, LEASE K A,et al.BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling[J].Cell,2002,110(2):213-222. |
9 | NOLAN T M, VUKAŠINOVIĆ N, LIU D R,et al.Brassinosteroids:multidimensional regulators of plant growth,development,and stress responses[J].The Plant Cell,2020,32(2):295-318. |
10 | 孙超,黎家.油菜素甾醇类激素的生物合成、代谢及信号转导[J].植物生理学报,2017,53(3):291-307. |
SUN C, LI J.Biosynthesis,catabolism,and signal transduction of brassinosteroids [J].Plant Physiology Journal,2017,53 (3):291-307. | |
11 | YANG X R, BAI Y, SHANG J X,et al.The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1[J].Plant,Cell & Environment,2016,39(9):1994-2003. |
12 | CAI Z Y, LIU J J, WANG H J,et al.GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(26):9651-9656. |
13 | ZHAO X, DOU L R, GONG Z Z,et al.BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis [J].New Phytologist,2019,221(2):908-918. |
14 | LI Q F, ZHOU Y, XIONG M,et al.Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling[J].Plant Science,2020,293:110435. |
15 | XIONG M, CHU L, LI Q F,et al.Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization[J].The Crop Journal,2021,9(5):1039-1048. |
16 | DE WIT M, GALVÃO V C, FANKHAUSER C.Light-mediated hormonal regulation of plant growth and development[J].Annual Review of Plant Biology,2016,67(1):513-537. |
17 | 李艳,马丽媛,张冠智,等.赤霉素和油菜素内酯协同调控暗前远红光处理下南瓜下胚轴伸长生长机制[J].中国农业大学学报,2023,28(12):98-110. |
LI Y, MA L Y, ZHANG G Z,et al.Mechanism of gibberellin and brassinolide synergistically regulating hypocotyl elongation of pumpkin under EOD-FR[J].Journal of China Agricultural University,2023,28(12):98-110. | |
18 | 董登峰,李杨瑞,江立庚.长效油菜素内酯TS303和二氢茉莉酸丙酯协同提高大豆光合能力[J].植物研究,2008,28(6):751-756. |
DONG D F, LI Y R, JIANG L G.Synergistic effects of long-lasting brassinosteroid TS303 and prophyl dihydrojasmonate on enhancing photosynthetic capacity of soybean[J].Bulletin of Botanical Research,2008,28(6):751-756. | |
19 | WANG J J, SUN N, ZHANG F F,et al.SAUR17 and SAUR50 differentially regulate PP2C-D1 during apical hook development and cotyledon opening in Arabidopsis [J].The Plant Cell,2020,32(12):3792-3811. |
20 | WANG J J, SUN N, ZHENG L D,et al.Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit[J].The Plant Cell,2023,35(1):390-408. |
21 | YANG R Z, LIU P, ZHANG T R,et al.Plant-specific BLISTER interacts with kinase BIN2 and BRASSINAZOLE RESISTANT1 during skotomorphogenesis[J].Plant Physiology,2023,193(2):1580-1596. |
22 | LIN F, CAO J, YUAN J L,et al.Integration of light and brassinosteroid signaling during seedling establishment[J].International Journal of Molecular Sciences,2021,22(23):12971. |
23 | ACKERMAN-LAVERT M, FRIDMAN Y, MATOSEVICH R,et al.Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function[J].Current Biology,2021,31(20):4462-4472. |
24 | RETZER K, AKHMANOVA M, KONSTANTINOVA N,et al.Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter[J].Nature Communications,2019,10(1):5516. |
25 | 林雨晴,齐艳华.生长素输出载体PIN家族研究进展 [J].植物学报,2021,56(2):151-165. |
LIN Y Q, QI Y H.Advances in auxin efflux carrier PIN proteins[J].Chinese Bulletin of Botany,2021,56(2):151-165. | |
26 | LI T T, KANG X K, WEI L,et al.A gain-of-function mutation in Brassinosteroid-insensitive 2 alters Arabidopsis floral organ development by altering auxin levels[J].Plant Cell Reports,2020,39(2):259-271. |
27 | LI T T, KANG X K, LEI W,et al.SHY2 as a node in the regulation of root meristem development by auxin,brassinosteroids,and cytokinin[J].Journal of Integrative Plant Biology,2020,62(10):1500-1517. |
28 | CHAIWANON J, WANG Z Y.Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots[J].Current Biology,2015,25(8):1031-1042. |
29 | 张娟.生长素信号转导途径及参与的生物学功能研究进展[J].生命科学研究,2009,13(3):272-277. |
ZHANG J.Review on auxin signal transduction pathway and biological functions[J].Life Science Research,2009,13(3):272-277. | |
30 | KIM H, PARK P J, HWANG H J,et al.Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development[J].Bioscience,Biotechnology,and Biochemistry,2006,70(4):768-773. |
31 | ALTAMURA M M, PIACENTINI D, DELLA ROVERE F,et al.New paradigms in brassinosteroids,strigolactones,sphingolipids,and nitric oxide interaction in the control of lateral and adventitious root formation[J].Plants,2023,12(2):413. |
32 | SUN L, FERARU E, FERARU M I,et al.PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana [J].Current Biology,2020,30(9):1579-1588. |
33 | BETTI C, DELLA ROVERE F, PIACENTINI D,et al.Jasmonates,ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids[J].Biomolecules,2021,11(1):77. |
34 | LV B S, TIAN H Y, ZHANG F,et al.Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis [J].PLoS Genetics,2018,14(1):e1007144. |
35 | FRIDMAN Y, STRAUSS S, HOREV G,et al.The root meristem is shaped by brassinosteroid control of cell geometry[J].Nature Plants,2021,7(11):1475-1484. |
36 | BAR M,ORI N.Leaf development and morphogenesis[J].Development,2014,141(22):4219-4230. |
37 | XIONG Y Y, WU B B, DU F,et al.A crosstalk between auxin and brassinosteroid regulates leaf shape by modulating growth anisotropy[J].Molecular Plant,2021,14(6):949-962. |
38 | WANG Q, YU F F, XIE Q.Balancing growth and adaptation to stress:crosstalk between brassinosteroid and abscisic acid signaling[J].Plant,Cell & Environment,2020,43(10):2325-2335. |
39 | LI Q Q, XU F, CHEN Z,et al.Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation[J].Nature Plants,2021,7(8):1108-1118. |
40 | KIM T W, YOUN J H, PARK T K,et al.OST1 activation by the brassinosteroid-regulated kinase CDG1-LIKE1 in stomatal closure[J].The Plant Cell,2018,30(8):1848-1863. |
41 | 苏甜,张应华,吕霞,等.植物侧枝发育的分子调控机理研究进展 [J].植物生理学报,2021,57(8):1609-1616. |
SU T, ZHANG Y H, LÜ X,et al.Advances in molecular regulation mechanism of lateral branch development in plants[J].Plant Physiology Journal,2021,57(8):1609-1616. | |
42 | XIA X J, DONG H, YIN Y L,et al.Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(11):e2004384118. |
43 | HU J, SUN S Y, WANG X L.Regulation of shoot branching by strigolactones and brassinosteroids:conserved and specific functions of Arabidopsis BES1 and rice BZR1[J].Molecular Plant,2020,13(6):808-810. |
44 | FAIZAN M, FARAZ A, SAMI F,et al.Role of strigolactones:signalling and crosstalk with other phytohormones[J].Open Life Sciences,2020,15:217-228. |
45 | WANG X X, WEI J, WU J H,et al.Transcription factors BZR2/MYC2 modulate brassinosteroid and jasmonic acid crosstalk during pear dormancy[J].Plant Physiology,2024,194(3):1794-1814. |
46 | LI J H, LI Y H, CHEN S Y,et al.Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis [J].Journal of Experimental Botany,2010,61(15):4221-4230. |
47 | LI Q F, WANG C M, JIANG L,et al.An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis [J].Science Signaling,2012,5(244):ra72. |
48 | UNTERHOLZNER S J, ROZHON W, PAPACEK M,et al.Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis [J].The Plant Cell,2015,27(8):2261-2272. |
49 | HOFMANN N R.Taking hormone crosstalk to a new level:brassinosteroids regulate gibberellin biosynthesis[J].The Plant Cell,2015,27(8):2081. |
50 | JIANG J J, ZHANG C, WANG X L.A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana[J].The Plant Cell,2015,27(2):361-374. |
51 | HONG J, LEE H, LEE J S,et al.ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants[J].Plant Physiology and Biochemistry,2019,139:207-214. |
52 | JI Y L, QU Y, JIANG Z Y,et al.The mechanism for brassinosteroids suppressing climacteric fruit ripening[J].Plant Physiology,2021,185(4):1875-1893. |
53 | HU S S, LIU L H, LI S,et al.Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato[J].Horticulture Research,2020,7:163. |
54 | MENG F L, LIU H R, HU S S,et al.The brassinosteroid signaling component SlBZR1 promotes tomato fruit ripening and carotenoid accumulation[J].Journal of Integrative Plant Biology,2023,65(7):1794-1813. |
55 | QI P, LIN Y S, SONG X J,et al.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J].Cell Research,2012,22(12):1666-1680. |
56 | LIU D P, ZHAO H, XIAO Y H,et al.A cryptic inhibitor of cytokinin phosphorelay controls rice grain size[J].Molecular Plant,2022,15(2):293-307. |
57 | JIANG W B, HUANG H Y, HU Y W,et al.Brassinosteroid regulates seed size and shape in Arabidopsis [J].Plant Physiology,2013,162(4):1965-1977. |
58 | LU X, XIONG Q, CHENG T,et al.A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight[J].Molecular Plant,2017,10(5):670-684. |
59 | 张悦婧,王涵琦,石珍珍,等.植物对非生物胁迫系统性反应中信号传递的研究进展[J].植物学报,2024,59(1):122-133. |
ZHANG Y J, WANG H Q, SHI Z Z,et al.Research progress in signaling in plant systemic responses to abiotic stress[J].Chinese Bulletin of Botany,2024,59(1):122-133. | |
60 | KUMAR S, ZAVALIEV R, WU Q L,et al.Structural basis of NPR1 in activating plant immunity[J].Nature,2022,605:561-566. |
61 | HAN Q, TAN W R, ZHAO Y Q,et al.Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance[J].The EMBO Journal,2022,41(19):e110682. |
62 | AHAMMED G J, XIA X J, LI X,et al.Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones[J].Current Protein and Peptide Science,2015,16(5):462-473. |
63 | CHU W, CHANG S M, LIN J C,et al.Methyltransferase TaSAMT1 mediates wheat freezing tolerance by integrating brassinosteroid and salicylic acid signaling[J].The Plant Cell,2024,36(7):2607-2628. |
64 | BARRERO-GIL J, HUERTAS R, RAMBLA J L,et al.Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments[J].Plant,Cell & Environment,2016,39(10):2303-2318. |
65 | AN S M, LIU Y, SANG K Q,et al.Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J].Journal of Integrative Plant Biology,2023,65(1):10-24. |
66 | SONG J, WU H, HE F,et al. Citrus sinensis CBF1 functions in cold tolerance by modulating putrescine biosynthesis through regulation of arginine decarboxylase[J].Plant and Cell Physiology,2022,63(1):19-29. |
67 | LI H, YE K Y, SHI Y T,et al.BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis [J].Molecular Plant,2017,10(4):545-559. |
68 | 刘亚洁,安黎哲.一氧化氮参与调控油菜素内酯增强高山离子芥悬浮细胞抗寒性[J].植物研究,2024,44(1):118-131. |
LIU Y J, AN L Z.Nitric oxide mediates brassinosteroids-induced chilling tolerance in Chorispora bungeana suspension cultured cells[J].Bulletin of Botanical Research,2024,44(1):118-131. | |
69 | KRISHNA P, PRASAD B D, RAHMAN T.Brassinosteroid action in plant abiotic stress tolerance[J].Methods in Molecular Biology,2017,1564:193-202. |
70 | FRIEDRICH T, OBERKOFLER V, TRINDADE I,et al.Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis [J].Nature Communications,2021,12(1):3426. |
71 | CHEN X, XUE H D, ZHU L P,et al.ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thaliana [J].BMC Biology,2022,20(1):254. |
72 | LI J F, ZHOU H P, ZHANG Y,et al.The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana [J].Developmental Cell,2020,55(3):367-380. |
73 | YANG R Z, YANG Z Y, XING M,et al.TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging[J].Journal of Genetics and Genomics,2023,50(11):861-871. |
74 | 魏鑫,倪虹,张会慧,等.外源脱落酸和油菜素内酯对干旱胁迫下大豆幼苗抗旱性的影响[J].中国油料作物学报,2016,38(5):605-610. |
WEI X, NI H, ZHANG H H,et al.Effects of exogenous abscisic acid and brassinolide on drought resistance of soybean seedlings [J].Chinese Journal of Oil Crop Sciences,2016,38(5):605-610. | |
75 | MILLER G, SUZUKI N, CIFTCI-YILMAZ S,et al.Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J].Plant,Cell & Environment,2010,33(4):453-467. |
76 | CHAUDHURI A, HALDER K, ABDIN M Z,et al.Abiotic stress tolerance in plants:brassinosteroids navigate competently[J].International Journal of Molecular Sciences,2022,23(23):14577. |
77 | NOLAN T M, BRENNAN B, YANG M R,et al.Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival[J].Developmental Cell,2017,41(1):33-46. |
78 | 刘德兵,魏军亚,李绍鹏,等.油菜素内酯提高香蕉幼苗抗冷性的效应[J].植物研究,2008,28(2):195-198,221. |
LIU D B, WEI J Y, LI S P,et al.Effects of brassinolide on chilling-resistance in banana seedlings[J].Bulletin of Botanical Research,2008,28(2):195-198,221. | |
79 | 李宁,王美月,孙锦,等.外源24-表油菜素内酯对弱光胁迫下番茄幼苗生长及光合作用的影响[J].西北植物学报,2013,33(7):1395-1402. |
LI N, WANG M Y, SUN J,et al.Effects of exogenous 24-epibrassinolide on growth and photosynthesis of tomato seedlings under low light stress[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(7):1395-1402. |
[1] | 刘亚洁, 安黎哲. 一氧化氮参与调控油菜素内酯增强高山离子芥悬浮细胞抗寒性[J]. 植物研究, 2024, 44(1): 118-131. |
[2] | 胡文海, 闫小红, 李晓红, 曹灶桂. 24-表油菜素内酯对干旱胁迫下辣椒叶片快速叶绿素荧光诱导动力学曲线的影响[J]. 植物研究, 2021, 41(1): 53-59. |
[3] | 董实伟, 杨宇宁, 王乃锐, 张含国, 李淑娟. 毛果杨固有无序蛋白质基因克隆及胁迫响应分析[J]. 植物研究, 2020, 40(4): 575-582. |
[4] | 李爽, 熊樱, RALF M;ller-Xing, 邢倩. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究, 2019, 39(5): 752-759. |
[5] | 张玉, 张悦, 张春蕊, 王艳敏, 王玉成, 王超. 刚毛柽柳腺苷甲硫氨酸脱羧酶(ThSAMDC)基因的克隆与胁迫下的表达分析[J]. 植物研究, 2018, 38(1): 132-140. |
[6] | 贾园园, 张春蕊, 王玉成, 杨传平, 王超. 刚毛柽柳Na+/H+逆向转运蛋白基因的克隆与表达分析[J]. 植物研究, 2016, 36(3): 380-387. |
[7] | 胡文海1*;詹秀花2;闫小红1;王旭明1;黄黎锋3. 24-表油菜素内酯对干旱胁迫下辣椒幼苗叶片抗氧化酶系统及耐旱相关基因表达的影响[J]. 植物研究, 2015, 35(6): 908-914. |
[8] | 贺转转;谷丽丽;李秀明;兰海燕*. 藜磷酸肌醇5-磷酸酶基因(CaP5P)的表达分析和胁迫响应检测[J]. 植物研究, 2013, 33(6): 731-737. |
[9] | 董登峰;李杨瑞*;江立庚. 长效油菜素内酯TS303和二氢茉莉酸丙酯协同提高大豆光合能力[J]. 植物研究, 2008, 28(6): 751-756. |
[10] | 刘德兵;魏军亚;李绍鹏;崔百明;彭 明*. 油菜素内酯提高香蕉幼苗抗冷性的效应[J]. 植物研究, 2008, 28(2): 195-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||