1. 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社,1999:290-291. Editorial Board of Chinese Botany Chinese Academy of Sciences. Flora of China[M]. Beijing:Science Press,1999:290-291. 2. 张争,杨云,魏建和,等. 白木香结香机制研究进展及其防御反应诱导结香假说[J]. 中草药,2010,41(1):156-159. Zhang Z,Yang Y,Wei J H,et al. Advances in studies on mechanism of agarwood formation in Aquilaria sinensis and its hypothesis of agarwood formation induced by defense response[J]. Chinese Traditional and Herbal Drugs,2010,41(1):156-159. 3. Wojtaszek P. Oxidative burst:an early plant response to pathogen infection[J]. Biochemical Journal,1997,322(3):681-692. 4. 辛松林,秦文,孙传红,等. 腐皮镰孢霉菌侵染及保鲜剂处理对秋葵相关抗性酶的影响[J]. 江苏农业学报,2018,34(5):1161-1168. Xin S L,Qin W,Sun C H,et al. Effects of Fusarium solani infection and preservative treatment on resistance associated enzyme from okra[J]. Jiangsu Journal of Agricultural Science,2018,34(5):1161-1168. 5. Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379. 6. 刘威,袁晓婷,张艳艳,等. 胭脂红景天引种至西藏日喀则其渗透调节物质及保护酶活性的变化[J]. 植物研究,2013,33(6):697-700. Liu W,Yuan X T,Zhang Y Y,et al. Changes of osmotic adjustment substances and activities of protective enzymes in Sedum spurium ‘Coccineum’ introduced to Xigaze,Tibet[J]. Bulletin of Botanical Research,2013,33(6):697-700. 7. 张兴丽. 伤害诱导的白木香防御反应与沉香形成的关系研究[D]. 北京:北京林业大学,2013. Zhang X L. Studies on relationships between wound-induced defense response and agarwood formation in Aquilaria sinensis[D]. Beijing:Beijing Forestry University,2013. 8. 王东光. 白木香结香促进技术研究[D]. 北京:中国林业科学研究院,2016. Wang D G. Study on agarwood-induced technique of Aquilaria sinensis[D]. Beijing:Chinese Academy of Forestry,2016. 9. 王东光,张宁南,杨曾奖,等. 人工诱导白木香树体抗逆能力的研究[J]. 华南农业大学学报,2016,37(6):70-76. Wang D G,Zhang N N,Yang Z J,et al. Study on resistance ability of Aquilaria sinensis trees under artificial induction[J]. Journal of South China Agricultural University,2016,37(6):70-76. 10. Hillis W E. Chemical aspects of heartwood formation[J]. Wood Science and Technology,1968,2(4):241-259. 11. Onuorah E O. Relative efficacy of heartwood extracts and proprietory wood preservatives as wood protectants[J]. Journal of Forestry Research,2002,13(3):183-190. 12. Mohamed R,Jong P L,Irdayu I N. Succession patterns of fungi associated to wound-induced agarwood in wild Aquilaria malaccensis revealed from quantitative PCR assay[J]. World Journal of Microbiology and Biotechnology,2014,30(9):2427-2436. 13. 王小菲,高文强,刘建锋,等. 植物防御策略及其环境驱动机制[J]. 生态学杂志,2015,34(12):3542-3552. Wang X F,Gao W Q,Liu J F,et al. Plant defensive strategies and environment-driven mechanisms[J]. Chinese Journal of Ecology,2015,34(12):3542-3552. 14. Giannopolitis C N,Ries S K. Superoxide dismutase:Ⅰ. occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314. 15. 张志良,瞿伟菁,李小方. 植物生理学实验指导:4版[M]. 北京:高等教育出版社,2009. Zhang Z L,Qu W J,Li X F. Plant physiology experimental guidance:4th ed[M]. Beijing:Higher Education Press,2009. 16. Dhindsa R S,Pamela Plumb-Dhindsa P,Thorpe T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany,1981,32(126):93-101. 17. 王谧,王芳,王舰. 应用隶属函数法对马铃薯进行抗旱性综合评价[J]. 云南农业大学学报,2014,29(4):476-481. Wang M,Wang F,Wang J. Evaluation of potato drought resistance by subordinate function[J]. Journal of Yunnan Agricultural University,2014,29(4):476-481. 18. Mittler R,Vanderauwera S,Suzuki N,et al. ROS signaling:the new wave?[J]. Trends in Plant Science,2011,16(6):300-309. 19. Suzuki N,Miller G,Morales J,et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Current Opinion in Plant Biology,2011,14(6):691-699. 20. 郭盈天,张泽,付强,等. 高温胁迫对金露梅叶片结构和生理代谢的影响[J]. 北方园艺,2018,23:83-98. Guo Y T,Zhang Z,Fu Q,et al. Effects of high temperature stress on leaf structures and physiogical metabolism of Potentilla fruticosa L.[J]. Northern Horticulture,2018,23:93-98. 21. Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930. 22. 李晶,阎秀峰,祖元刚. 低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J]. 植物学报,2000,42(2):148-152. Li J,Yan X F,Zu Y G. Generation of activated oxygen and change of cell defense enzyme activity in leaves of Korean Pine seedling under low temperature[J]. Acta Botanica Sinica,2000,42(2):148-152. 23. 时丽冉,白丽荣,吕亚慈,等. 小麦杂交品种衡9966苗期耐盐性分析[J]. 作物杂志,2018,(6):149-153. Shi L R,Bai L R,Lü Y C,et al. Analysis of salt tolerance at the seedling stage of wheat hybrid variety Heng 9966[J]. Crops,2018,(6):149-153. 24. Zhao J,Davis L C,Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnology Advances,2005,23(4):283-333. 25. O'donnell P J,Calvert C,Atzorn R,et al. Ethylene as a signal mediating the wound response of tomato plants[J]. Science,1996,274(5294):1914-1917. 26. Avanci N C,Luche D D,Goldman G H,et al. Jasmonates are phytohormones with multiple functions,including plant defense and reproduction[J]. Genetics and Molecular Research,2010,9(1):484-505. 27. 刘艳艳,萧凤回. JAs、SAs介导的植物防御反应及在药用植物中的应用[J]. 中国农学通报,2010,26(14):98-100. Liu Y Y,Xiao F H. Jasmonate and Salicylate-mediated plant defense responses and their application in medicinal plants[J]. Chinese Agricultural Science Bulletin,2010,26(14):98-100. 28. 陈少裕. 膜脂过氧化对植物细胞的伤害[J]. 植物生理学通讯,1991,27(2):84-90. Chen S Y. Injury of membrane lipid peroxidation to plant cell[J]. Plant Physiology Communication,1991,27(2):84-90. 29. 刘晓英,焦学磊,徐志刚,等. 不同红蓝LED光照强度对樱桃番茄幼苗生长和抗氧化酶活性的影响[J]. 南京农业大学学报,2015,38(5):772-779. Liu X Y,Jiao X L,Xu Z G,et al. Effects of different red and blue LED light intensity on growth and antioxidant enzyme activity of cherry tomato seedlings[J]. Journal of Nanjing Agricultural University,2015,38(5):772-779. 30. Lindquist S,Craig E A. The heat-shock proteins[J]. Annual Review of Genetics,1988,22(1):631-677. 31. Rajput V D,Chen Y,Ayup M. Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth[J]. Russian Journal of Plant Physiology,2015,62(2):229-236. 32. 徐维娜. 真菌侵染诱导沉香形成关键技术效果评价及结香机制初步研究[D]. 广州:广东药学院,2011,9. Xu W N. Evaluation on key technology of fungi infection-induced aloes-forming effect and preliminary research on the mechanism of the eaglewood formation[D]. Guangzhou:Guangdong Pharmaceutical University,2011,9. 33. 崔之益,徐大平,杨曾奖,等. 心材形成机理与人工促进研究进展[J]. 世界林业研究,2016,29(6):33-37. Cui Z Y,Xu D P,Yang Z J,et al. A review of mechanism and artificial promotion of heartwood formation[J]. World Forestry Research,2016,29(6):33-37. 34. Ziegler H. Biologische aspekte der kernholzbildung[J]. Holz als Roh-und Werkstoff,1968,26(2):61-68. 35. 诸葛强,黄敏仁,潘惠新,等. 杨树湿心材的化学特性及形成机理研究[J]. 林业科学,1997,33(3):259-266. Zhu G Q,Huang M R,Pan H X,et al. Study on chemical characteristics and formation mechanism of poplar wetheartwood[J]. Scientia Silvae Sinicae,1997,33(3):259-266. |