欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2020, Vol. 40 ›› Issue (5): 659-665.doi: 10.7525/j.issn.1673-5102.2020.05.003

• 研究报告 • 上一篇    下一篇

森林覆被率等因子与PM2.5的时间滞后效应的研究

李三, 郭金禄, 郑煜   

  1. 东北林业大学理学院, 哈尔滨 150040
  • 收稿日期:2020-03-20 出版日期:2020-09-05 发布日期:2020-07-10
  • 通讯作者: 郑煜(1962-),女,教授,主要从事概率论与数理统计方面的研究,E-mail:zhengyu62@126.com E-mail:zhengyu62@126.com
  • 作者简介:李三(1992-),男,硕士研究生,主要从事概率论与数理统计方面的研究。
  • 基金资助:
    黑龙江省自然科学基金面上项目(G2016001)

Relation between Forest Cover Rate and Time Lag of PM2.5

LI San, GUO Jin-Lu, ZHENG Yu   

  1. College of Science, Northeast Forestry University, Harbin 150040
  • Received:2020-03-20 Online:2020-09-05 Published:2020-07-10
  • Supported by:
    General Project of Heilongjiang Natural Science Foundation(G2016001)

摘要: 利用黑龙江省13个市(区)的170 820个数据,运用2SLS方法以森林覆被率等11个影响因素为指标,建立了3个不同时间段的静态面板和动态面板回归模型,探究了森林覆被率等影响因素与PM2.5时间滞后效应的关系。结果表明:①PM2.5的时间滞后效应是当期PM2.5浓度积累的影响因素,且随着时间的推移,PM2.5时间滞后效应对当期PM2.5浓度积累的促进作用逐渐减弱;②随着PM2.5时间滞后效应的逐渐减弱,森林覆被率、气温对PM2.5浓度积累所起的阻碍作用逐渐增强,PM10、CO对PM2.5浓度积累的促进作用逐渐增强,而风速对当期PM2.5浓度积累所起的阻碍作用逐渐减弱;③PM2.5时间滞后效应呈现出惯性的同时,森林覆被率、PM10、CO、气温、风速对PM2.5的作用也具有了惯性。

关键词: 森林覆被率, PM2.5时间滞后效应, 动态面板数据模型, 2SLS方法

Abstract: With 170 820 data from 13 cities(districts) in Heilongjiang Province, by using the 2SLS method to take 11 influencing factors such as forest cover as variable, we established three different time periods of static panel and dynamic panel regression models, and discussed the relationship between the lag effect of PM2.5 and the influencing factors such as forest cover rate. The results show that:①the time lag effect of PM2.5 is the influencing factor of the PM2.5 concentration accumulation in the current period, and the promotion effect of the PM2.5 time lag effect on the PM2.5 concentration accumulation was gradually weakened with the passage of time. ②With the gradual weakening of the time lag effect of PM2.5, the forest cover rate and air temperature gradually increased the hindrance of PM2.5 concentration accumulation, PM10 and CO gradually enhanced the promotion effect of PM2.5 accumulation, however, the obstacle effect of wind speed increasing PM2.5 concentration accumulation was gradually weakened. ③While the time lag effect of PM2.5 showed inertia, the effects of forest cover, PM10, CO, air temperature, and the wind speed on PM2.5 also had inertia.

Key words: forest cover, time lag effect of PM2.5, dynamic panel data model, 2SLS method

中图分类号: