1. Schreiber L,Franke R B. Endodermis and exodermis in roots[R]. Chichester:John Wiley and Sons Ltd,2011,doi:10. 1002/9780470015902. a0002086. pub2.
2. Abiko T,Kotula L,Shiono K,et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize(Zea mays ssp. mays)[J]. Plant,Cell & Environment,2012,35(9):1618-1630.
3. Yang C D,Zhang X,Li J K,et al. Anatomy and histochemistry of roots and shoots in wild Rice(Zizania latifolia Griseb.)[J]. Journal of Botany,2014:181727.
4. 杨朝东,张霞. 双穗雀稗(Paspalum distichum)通透性生理和茎解剖结构补充研究[J]. 植物研究,2013,33(5):564-568.Yang C D,Zhang X. Permeability and supplement structures of stems of Paspalum distichum[J]. Bulletin of Botanical Research,2013,33(5):564-568.
5. 张霞,杨朝东,宁国贵. 狗牙根和双穗雀稗根中质外体屏障结构发育过程的比较研究[J]. 湖北农业科学,2013,52(20):4991-4994.Zhang X,Yang C D,Ning G G. The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichum roots[J]. Hubei Agricultural Sciences,2013,52(20):4991-4994.
6. Seago J L Jr.,Peterson C A,Enstone D E,et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots[J]. Canadian Journal of Botany,1999,77(1):122-134.
7. Soukup A,Armstrong W,Schreiber L,et al. Apoplastic barriers to radial oxygen loss and solute penetration:a chemical and functional comparison of the exodermis of two wetland species,Phragmites australis and Glyceria maxima[J]. New Phytologist,2007,173(2):264-278.
8. Yang C D,Zhang X,Zhou C Y,et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan floodplain along the Yangtze River,China[J]. Flora,2011,206(7):653-661.
9. 杨朝东,李守峰,邓仕明,等. 白茅解剖结构和屏障结构特征研究[J]. 草业学报,2015,24(3):213-218.Yang C D,Li S F,Deng S M,et al. Study of the anatomy and apoplastic barrier characteristics of Imperata cylindrica[J]. Acta Prataculturae Sinica,2015,24(3):213-218.
10. 杨朝东,李守峰,姚兰,等. 天胡荽(Hydrocotyle sibthorpioides)的解剖和屏障结构特征研究[J]. 草业学报,2015,24(7):139-145.Yang C D,Li S F,Yao L,et al. A study of anatomical structure and apoplastic barrier characteristics of Hydrocotyle sibthorpioides[J]. Acta Prataculturae Sinica,2015,24(7):139-145.
11. López-pérez L,Fernández-garcía N,Olmos E,et al. The phi thickening in roots of broccoli plants:an acclimation mechanism to salinity[J]. International Journal of Plant Sciences,2007,168(8):1141-1149.
12. Fernández-garcía N,López-pérez L,Hernandez M,et al. Role of phi cells and the endodermis under salt stress in Brassica oleracea[J]. New Phytologist,2009,181(2):347-360.
13. Meyer C J,Peterson C A. Casparian bands occur in the periderm of Pelargonium hortorum stem and root[J]. Annals of Botany,2011,107(4):591-598.
14. Mcmanus H A,Seago J L,Jr.,Marsh L C. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L.,Typha angustifolia L. and Typha glauca Godr[J]. Annals of Botany,2002,90(4):489-493.
15. Vecchia F D,Cuccato F,Rocca N L,et al. Endodermis-like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix[J]. Annals of Botany,1999,83(1):93-97.
16. Watanabe H,Saigusa M,Morita S. Identification of Casparian bands in the mesocotyl and lower internodes of rice(Oryza sativa L.) seedlings using fluorescence microscopy[J]. Plant Production Science,2006,9(4):390-394.
17. Mertz R A,Brutnell T P. Bundle sheath suberization in grass leaves:multiple barriers to characterization[J]. Journal of Experimental Botany,2014,65(13):3371-3380.
18. Enstone D E,Peterson C A,Ma F S. Root endodermis and exodermis:structure,function,and responses to the environment[J]. Journal of Plant Growth Regulation,2002,21(4):335-351.
19. 杨朝东,张霞,刘国锋,等. 植物根中质外体屏障结构和生理功能研究进展[J]. 植物研究,2013,33(1):114-119.Yang C D,Zhang X,Liu G F,et al. Progress on the structure and physiological functions of apoplastic barriers in root[J]. Bulletin of Botanical Research,2013,33(1):114-119.
20. Fich E A,Segerson N A,Rose J K C. The plant polyester cutin:biosynthesis,structure,and biological roles[J]. Annual Review of Plant Biology,2016,67(1):207-233.
21. Brundrett M C,Enstone D E,Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin,lignin,and callose in plant tissue[J]. Protoplasma,1988,146(2):133-142.
22. Brundrett M C,Kendrick B,Peterson C A. Efficient lipid staining in plant material with Sudan red 7B or Fluoral yellow 088 in polyethylene glycol-glycerol[J]. Biotechnic & Histochemistry,1991,66(3):111-116.
23. Pauluzzi G,Divol F,Puig J,et al. Surfing along the root ground tissue gene network[J]. Developmental Biology,2012,365(1):14-22.
24. Naseer S,Lee Y,Lapierre C,et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin[J]. Proceedings of the National Academy of Science of the United States of America,2012,109(25):10101-10106.
25. Alassimone J,Roppolo D,Geldner N,et al. The endodermis-development and differentiation of the plant's inner skin[J]. Protoplasma,2012,249(3):433-443.
26. Geldner N. The endodermis[J]. Annual Review of Plant Biology,2013,64(1):531-558.
27. Roppolo D,De Rybel B,Tendon V D,et al. A novel protein family mediates Casparian strip formation in the endodermis[J]. Nature,2011,473(7347):380-383.
28. Lee Y,Rubio M C,Alassimone J,et al. A mechanism for localized lignin deposition in the endodermis[J]. Cell,2013,153(2):402-412.
29. Jensen W A. Botanical histochemistry:principles and practice[M]. San Francisco,CA:W. H. Freeman,1962.
30. Meyer C J,Seago J L Jr.,Peterson C A. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots[J]. Annals of Botany,2009,103(5):687-702.
31. Roppolo D,Boeckmann B,Pfister A,et al. Functional and evolutionary analysis of the Casparian strip membrane domain protein family[J]. Plant Physiology,2014,165(4):1709-1722.
32. Pfister A,Barberon M,Alassimone J,et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects[J]. eLIFE,2014,3:e03115.
33. Shiono K,Ogawa S,Yamazaki S,et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.
34. Buschhaus C,Jetter R. Composition differences between epicuticular and intracuticular wax substructures:how do plants seal their epidermal surfaces[J]?Journal of Experimental Botany,2011,62(3):841-853.
35. Beisson F,Li-Beisson Y,Pollard M. Solving the puzzles of cutin and suberin polymer biosynthesis[J]. Current Opinion in Plant Biology,2012,15(3):329-337.
36. Schreiber L. Transport barriers made of cutin,suberin and associated waxes[J]. Trends in Plant Science,2010,15(10):546-553.
37. Watanabe K,Nishiuchi S,Kulichikhin K,et al. Does suberin accumulation in plant roots contribute to waterlogging tolerance[J]?Frontiers in Plant Science,2013,4(2):57-60.
38. 张晓民. 禾本科植物细胞壁的木质化和阿魏酰化[J]. 中国野生植物资源,2011,30(6):7-13.Zhang X M. Lignification and feruloylation in the cell wall of grass family[J]. Chinese Wild Plant Resources,2011,30(6):7-13. |