Please wait a minute...
Welcome to Bulletin of Botanical Research! Today is Share:
IMAGE/TABLE DETAILS
Effects of Rare Earth Element Lanthanum on Adventitious Buds Induction, Plantlets Growth and Synthesis of Secondary Metabolites of Dendrobium officinale
Yong-Mei MIAO, Yuan Tong, Da Fang, Yu-Hao Wang
Bulletin of Botanical Research    2020, 40 (6): 839-845.   DOI: 10.7525/j.issn.1673-5102.2020.06.006
Abstract   (813 HTML27 PDF(pc) (929KB)(271)  

The experiment was conducted to study the effects of rare earth element lanthanum on adventitious buds induction, plantlets growth and secondary metabolites synthesis of Dendrobium officinale by adding 30-150 μmol·L-1 La(NO33 to the media. The effects of 70-90 μmol·L-1 La3+ on induction and growth of adventitious buds were the best. The treatment of 130 μmol·L-1 La3+ could significantly increase chlorophyll content of seedlings, and 110 μmol·L-1 La3+ could significantly promote plant growth with 15.22 times of fresh weight, and 12.05∶100 of dry weight-fresh weight ratio, which was 64.39% higher than that of control. A certain concentration of La3 + could significantly improve the content of four components in D.officinale. The polysaccharide content reached the peak value of 98.84 mg·g-1 under 110 μmol·L-1 La3+ treatment. The contents of flavonoids, phenolic acid and bibenzyl reached maximum value of 4.31, 7.56 and 21.01 mg·g-1, respectively, when 90 μmol·L-1 La3+ added to media. Both indexes of bibenzyl and flavonoids were highly correlated with other five indexes, while phenolic acid and chlorophyll content were little correlated with other indexes. This study laid the foundation for further exploring the mechanism of rare earth on promoting growth and improving quality of D.officinale, and provided a theoretical basis for scientific and rational utilization of rare earth elements in plant tissue culture.


浓度

Concentration

(μmol·L-1

多糖含量

Polysaccharide content

(mg·g-1)

总黄酮含量

Total flavonoids content

(mg·g-1)

总酚含量

Total phenols content

(mg·g-1)

联苄含量

Bibenzyl content

(mg·g-1)

077.24±0.30e3.05±0.25d6.67±0.06ed12.12±0.12e
3079.92±0.55d3.42±0.21cd6.81±0.17de12.50±0.12e
5082.08±0.62c3.59±0.21bcd7.15±0.14bc14.67±0.24d
7083.20±0.42c4.12±0.31ab7.38±0.10ab17.84±0.12c
9089.36±0.85b4.31±0.16a7.56±0.02a21.01±0.31a
11098.84±0.66a3.83±0.08ab6.97±0.04cd19.91±0.08b
13071.00±1.21f3.40±0.25cd6.46±0.17f19.57±0.19b
15037.32±1.07g3.18±0.49cd5.35±0.10g12.43±0.19e
Table 3 Effects of La3+concentrationon the contents of 4 metabolites
Extracts from the Article
铁皮石斛干品中4种代谢产物含量的变化见表3。一定浓度的La3+有利于多糖、黄酮、酚酸和联苄的合成,30~110 μmol·L-1 La3+处理上其多糖合成能力显著高于对照,110 μmol·L-1处理上其多糖含量最高,为98.84 mg·g-1,比对照提高了27.96%;超过130 μmol·L-1时,多糖合成受到显著性的抑制。随La3+浓度的升高,黄酮、酚酸和联苄含量均出现先升高后降低趋势,90 μmol·L-1处理上3种成分含量最高,分别为4.31,7.56和21.01 mg·g-1,比对照显著提高了41.31%,13.35%,73.35%。
稀土在植物土培、水培或组培等领域都有应用,可以施加到栽培基质中,也可喷施到植株上。植物组织培养过程中添加合适浓度的稀土有促进组培苗分化、生长、愈伤组织形成、再分化及改善品质的作用,已被广泛应用到药用植物离体培养[9~11,16~18]。不同植物所需的稀土种类、浓度和添加时间不尽相同,可能是由于不同植物不同时期的酶活性、细胞分泌等功能受金属离子的影响不同。因此,植物增产、改善品质所需的稀土浓度需不断摸索。作者在进行长期的铁皮石斛组培中发现,石斛苗生长缓慢,继代周期3个月。前期研究还表明铁皮石斛茎段离体培养中,存在出芽部位要求特殊及外植体易褐化死亡等问题,往往在节处形成芽点而节间极难出芽,采取的措施是在节处切割形成两端带节点的培养物,即便如此,茎段不定芽诱导率仍然很低、芽数少。本试验采用培养基中添加硝酸镧的方式研究La3+的作用,表明70~90 μmol·L-1的La3+能显著促进茎段不定芽的形成和生长。130 μmol·L-1的La3+能显著提高组培苗叶绿素含量,植株在含110 μmol·L-1 La3+培养基上生长最好,鲜重增加显著,干物质增加最多,张桂芳研究表明30~40 mg·L-1的硝酸镧能明显提高铁皮石斛组培苗鲜重、株高等,明显降低分蘖数,10~40 mg·L-1的硝酸镧能显著提高叶绿素含量[10];铁皮石斛盆苗喷施20 mg·L-1的氯化镧后叶绿素含量比对照提高了54.37%[11];培养基中添加15 mg·L-1硝酸镧处理组的霍山石斛与对照组长势相当,随浓度增加,侧芽高度和增殖倍数受到抑制[19];当然也有稀土对叶绿素影响不明显的研究报道,如硝酸镧对细茎石斛叶绿素含量影响差异不显著[9]。本研究相关性分析表明叶绿素含量与植株生长量呈正相关,但相关性不显著,说明植株的生长还有可能是因La3+激活了其他生理指标的改变,如有研究指出La3+在促进了铁皮石斛生长的同时,也提高了植株SOD酶、CAT酶和根系活力[12]。另有研究指出稀土对紫草的促生也与酶活的提升有关系[18];但有研究表明La3+是通过与细胞壁的结合以改变细胞的通透性来增加细胞对部分营养离子的吸收,也可能是通过刺激细胞有丝分裂使生物量增加[20~21]。
Other Images/Table from this Article