欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2021, Vol. 41 ›› Issue (5): 775-788.doi: 10.7525/j.issn.1673-5102.2021.05.016

• 研究报告 • 上一篇    

秋海棠(Begonia grandis)的种内表型多样性

李雁瓷1,2,3, 付乃峰2,3, 孙加芝2,3, 肖艳2,3, 曹建国1, 田代科2,3()   

  1. 1.上海师范大学生命科学学院,上海 200234
    2.上海辰山植物园/中国科学院上海辰山植物科学研究中心,上海 201602
    3.上海市资源植物功能基因组学重点实验室,上海 201602
  • 收稿日期:2020-04-19 出版日期:2021-09-20 发布日期:2021-07-05
  • 通讯作者: 田代科 E-mail:dktian@sibs.ac.cn
  • 作者简介:李雁瓷(1995—),女,硕士研究生,主要从事秋海棠分类研究。
  • 基金资助:
    国家自然科学基金(31570199)

Intraspecific Phenotypic Diversity in Begonia grandis

Yan-Ci LI1,2,3, Nai-Feng FU2,3, Jia-Zhi SUN2,3, Yan XIAO2,3, Jian-Guo CAO1, Dai-Ke TIAN2,3()   

  1. 1.College of Life Sciences,Shanghai Normal University,Shanghai 200234
    2.Shanghai Chenshan Botanical Garden,Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences,Shanghai 201602
    3.Shanghai Key Laboratory of Plant Functional Genomics and Resources,Shanghai 201602
  • Received:2020-04-19 Online:2021-09-20 Published:2021-07-05
  • Contact: Dai-Ke TIAN E-mail:dktian@sibs.ac.cn
  • About author:LI Yan-Ci(1995—),female,master student,engaged in the classification of begonias.
  • Supported by:
    National Natural Science Foundation of China(31570199)

摘要:

《中国植物志》和Flora of China关于秋海棠(Begonia grandis)的种内分类存在争议,根据两者的分类依据在实践中无法操作,显然该种的种内单元分类还存在问题。为了全面理解秋海棠的种内多样性,在此基础上对其种内单元进行合理分类,以39个秋海棠居群为研究材料,对33个表型性状进行多样性及数量分类分析。通过数量性状变异分析、质量性状遗传多样性分析、主成分分析和R形聚类分析从33个性状中筛选出主要性状进行Q型聚类分析。结果显示:秋海棠的表型多样性丰富,数量性状变异系数为0.077~0.441,质量性状多样性指数为0.287~1.483。主成分分析结果表明:33个性状可综合为6个主成分,其累计贡献率达72.28%。R型聚类分析结果表明:除叶形和花形大小指标相关外,各性状相对独立。Q型聚类结果显示:39个秋海棠居群按雄花大小、叶片大小、植株大小和叶色分为四组,同Flora of China将该种分成3个亚种处理不一致。因此,对秋海棠的种内单元的划分今后有必要综合分子生物学方面的证据来讨论才更合理。有趣的是发现日本秋海棠的自然化居群的祖先极可能为浙江天目山居群。

关键词: 秋海棠, 主成分分析, 聚类分析, 分类, 中国

Abstract:

Flora Reipublicae Popularis Sinicae ”and “Flora of China” had different opinions on the subspecies treatment of Begonia grandis Dryander, which could not be applied in practice according to their classification criteria, and the issues still remain unsolved in the subspecies classification of this species. In order to understand intraspecific diversity of B.grandis, a numerical classification study was conducted with 33 phenotypic traits from 39 wild B.grandis populations. By quantity characters variation analysis, quality traits genetic diversity analysis, principal component analysis and R-type cluster analysis, the main traits were screened out from 33 traits for Q-type cluster analysis. The phenotypic diversity of B.grandis was rich, the variation coefficient of quantity traits was 0.077-0.441, and the Shannon-Wiener diversity index of quality characters was 0.287-1.483. Principal component analysis showed that 33 traits could be integrated into 6 principal components, and the cumulative contribution rate was 72.28%. R-type cluster analysis showed that the characters were relatively independent except for the correlation between leaf size and male flower size. Q-type cluster analysis classified 39 B.grandis populations into four groups with male flower size, leaf size, plant size, leaf color, which was inconsistent with three subspecies classified by Flora of China. Therefore, it was necessary to combine the molecular evidence to discuss the rational intraspecific classification of B.grandis in the future. It was interesting that Japanese naturalized populations of B.grandis very possibly originated from Tianmu Mountain population in Zhejiang Province.

Key words: Begoniaceae, principal component analysis, cluster analysis, taxonomy, China

中图分类号: